Chapter 2 NOTIONS OF CALCULUS

One of the main methods of the modern approach to mathematics is the
recognition of familiar concepts at work in unfamiliar settings. Thus, the
ideas of linear algebra, originally introduced for the purpose of solving
systems of equations, will be seen also to have relevance in the study of
functions. In time it will be seen that many simple concepts of geometry
permeate a lot of mathematics. Thus it is important to us, where possible,
to try to isolate our concepts and set them in an initially very abstract situation
in order to maximize their applicability. Of course, we can’t just do that;
we must have had some familiarity with the behavior of those concepts. For
that we need examples. As we study these examples we can begin to recog-
nize more and more clearly the essence of our concept. This gives rise to a
(perhaps) tentative abstract proposal which requires further study of new
examples, born out of our generalizations. This procedure, iterated over
and over again, may take many generations and the best work of many
mathematicians before a clear, precise and satisfactory definition is molded.
So it has been with the limit notion, which was implicit in the early 17th
century, which was in some sense formulated by Newton and Leibniz in the
18th century, but which did not take a final and comprehensible form until
the late 19th century. We shall not try to encompass over two centuries of
struggle in a few pages; we shall have to take some short cuts and we shall
try (for obvious pedagogical reasons) to avoid the great confusion that is
suffered during such development.

The basic technique of calculus is approximation. Let us give an illustra-
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tion of how it goes. The problems of calculus are such that we are required
to produce a function that has given properties. There are two aspects to
this problem. There is the theoretical aspect: to be assured that there exists
a solution to our problem, and the practical one: to describe a procedure for
effectively computing that solution. These two aspects are inseparable.
In fact, we make a sequence of attempts to solve the problem. If these
attempts are good it will provide us with a sequence of functions successively
providing better solutions to the problem. Then further study of the general
form of these tentative solutions may provide a clue to the accurate solution.

Supposing we have a square of side length one unit in the plane (see Figure
2.1) consider this problem. Find a function f defined on the box which has
prescribed values at the vertices and which satisfies this condition: For every
point in the box and any rectangle with center at that point, the value of f at
that point is the average of the values of f at the vertices of the rectangle.
Now we can write these conditions more precisely:

f0,00=a fO,D=b fQ,0=c [f(1,1)=d

where a, b, ¢, d are given numbers. Further, for any (x, y) and (s, f) we must
have

f(x,)’)=%[f(X—S,y—t)+f(x+S,y—t)+f(x+S,J’+t)
+f(x—sy+0] @1

Now, how do we find such a function? We compute, based on the given
information, its value at certain points and try to see if we obtain a pattern.

0, 1) (L, 1)

s

(x+sy+0)
4 *(x,)

(x—s,y—1)

(0,0) (1,0)
Figure 2.1
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First of all, the value at the center of the box is easy to find

fGH=Ha+b+c+d

By (2.1) we can compute the value at the center points of the sides:

(s=14,1t= 0)7
b
£3,0) =370, + /(1,0 +701,0) + 10,01 ="

Similarly, we obtain the values at all the other center points shown in Figure
2.2. Let us move to more complicated points, for example, the centers of the
four squares in Figure 2.2. Since we know the values at all the relevant
vertices, we may compute, by (2.1)

fGH=5a+35b+4c+ 34

G YH=Fa+ b+ Fsc+ %4

16 (22)
fGD=Fa+ b+ Z5c+ 54
G =Fa+Lb+FHe+ 34

Now we can see that we can break the given square into 16 squares and
compute the values at the centers (points of the form p/23, /23, and so

c+d
d 2 ¢
atd Latb+c+d b+c
2 4 2
* L]
a a+b . b
2

Figure 2.2
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forth). We can successively compute the necessary values of f at all points
of the form p/2", g/2". Since any point in the rectangle has points of this
form arbitrarily near it, we surmise that by this tedious procedure, we will
be able to approximate the value of f at any point. It is fair to guess then
that a solution to our problem exists and that we have described a technique
for computing its values. If we return to Equations (2.2) (or their successors
at the next stage) we may be able to really find a formula for the solution.
Now it turns out that Equations (2.2) may be rewritten as

pq q(2 —p)d

b+2—2;|6+ 27

p g\ (-p2"-q  p2"-4q)
f(i’ —2_n) - 22n a+ 22n

(2.3)

(thecasen=2;p=0,1,2,3; ¢g=0,1,2,3). We can show by successively
computing the values at centers of squares that (2.3) is valid for all n. Thus
rewriting (2.3), we can assert that if (x, y) is of the form (p/2", g/2") withp and
q as integers, then

G, ) =0 =x)1 - pa+ x(1 — y)b+ xyc+ (1 —x)yd 2.9

Assuming that fis a well-behaved function this must then hold for all points
(x,y). Finally, we can show by substituting into the required conditions
that (2.4) gives the solution.

Our purpose in the present chapter is to discuss the theoretical concepts
which remove the fuzziness in the above discussion. We shall expose the
ideas limit and continuity in the setting of functions of many variables. We
shall also present a review of the information from calculus which is necessary
to the study of this text.

2,1 Convergence of Sequences

Before proceeding directly to the limit notion, a few words on the notion
of a sequence are in order. Let X be any set. A sequence of points in X
is an ordered collection {x,, X3, ..., X,, ...} of points in X, one for each
positive integer. Another way of saying that is this: a sequence of points
in X is given by a function f: P —» X, where we denote f(n) by x,. As a
shorthand device we will often denote the sequence {xy, Xy, ..., Xn,...}
merely by its general term {x,}.
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Examples
1. {1,2,3,...,n,...} f(n)y=n {n}.
1 1 (=1 _=y =y
2. {—1,5,"'-3',..., n ,...} f(n)— n { n }
3. {10, 10'2, ..., 10" ..} f(n) =10/ {10/},

A subsequence of a given sequence {x,} is a sequence {y,} extracted
from the ordered collection {x;,...,X,,...}- Thus, the collections

4, {odd-numbered x,’s} = {X3,-1},
5. {every fifth term in {x,}} = {xs5.},
6. {x,}, where p, is the nth prime,

7. {%4m}> Where g is a strictly increasing function on the positive
integers,
are all subsequences of {x,}, whereas

8. {x{, X1, ...» Xy, ...} 18 not a subsequence.

The above description of subsequence is a bit vague. The phrase * extracted
from >’ is picturesque but not too meaningful. Is the sequence

{Xs5,X4,X35X0,X15X105%X9s +v03XgseesXsns Xsp—1,
Xsp—25 Xs5n-35 X5n—4> }

a subsequence of {x,}? Itisn’t clear from the preceding paragraph. How-
ever, we should draw the line and exclude such new sequences. The essence
of a subsequence will be that it consists of some of the x,’s, infinitely many
of them, and collected in the same order. Now, to be really exacting, our
notion of sequence itself is imprecise; we seem to have failed to say what it is.
““An ordered collection ” is not very satisfactory. We have already elaborated
on that: ““a sequence ... is given by a function /1 P— X ... .” Yet,itis
given by “...,” but what is it? It turns out that this line of metaphysical
questioning bogs down, and is in fact irrelevant. We have already found
something which completely describes the sequence (the function f: P —X),
so why not define a sequence just as such a function? Indeed, when we do
s0, it becomes very easy to also define a subsequence.

Definition 1. Let X be a set. A sequence in X is a function f: P — X.
A subsequence of this sequence is another sequence h: P — X, where h=fog
and g is a strictly increasing function from P to P,
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Thus, if {x,, ..., x,, ...} is a sequence, this is in fact just another way of
writing the function f, f(n) = x,. If fogis a subsequence, we can enumerate
it as {X,1ys Xg2p0 + o o> Xgeayr -+ -}

The above definition is an illustration of a standard mathematical procedure
of defining things. A concept is, mathematically, an object with such and
such properties. Once we have stated the properties which we feel describe
the concept, there is no need to further inquire what the object is; we simply
define it by those properties. We now introduce the notion of convergence
of a sequence of numbers (which we may take as complex numbers).

Definition 2. Let {z,} be a sequence of complex numbers. We say that
the sequence converges if there is a z € C such that to every positive number
&> 0, there corresponds an integer N such that |z, — z| <eforn>=N. In
this case we say {z,} converges to z, written lim z, = z or limz, =z or

n— o0

Z

= Z.

Said another way, the sequence f: P — C converges to z € C if, given any
disk centered at z, the range of f on all but finitely many integers lies in that
disk (see Figure 2.3).

Figure 2.3
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The following proposition asserts that a sequence cannot converge to more
than one point, and gives necessary conditions for convergence, without
reference to the limit point.

Proposition 1. Suppose lim z, = z.

(i) if also lim z, = w, then w = z,
(ii) the sequence is bounded, that is, there is an M > 0 such that |z,| < M
for all n,
(iii) (Cauchy criterion) for every &>0, there is an N>0 such that
|z, — z,| <€&foralln,m=N.

Proof.
(i) By the hypotheses, given ¢ >0, there are Ni, N, such that |z, — z| < ¢ for
n>Ny, |lzn—w|<eforn>N,. Thus,

IZ— W‘ < |Z_ZN1+N2| + IZN1+N2 - Wl <2e

Since the inequality |z — w| << 2¢ holds for all £ > 0, we must have |z— w| <0, or
z=w.

(ii) Taking ¢ =1, there is an integer N such that |z,—z| <1 for n>N. Let
M =max{|z|, |z1l, |zz|, ..., |zx|}+ 1. Then if <N, certainly |z,| <M. If
n>N, |z <l|za—z|+ 12| <1+ |z] <M.

(iii) Let ¢ >0 be given. There is an integer N such that |z, — z| < &/2 for
n<N. Thus, if n, m > N, we have

& &
|Zn— Za| <|Zz—z| + |Zm—z| <= +-=¢
1< |+ | | 5153

Condition (iii) is called a criterion for it implies convergence, as we shall
see below. Notice that (ii) does not imply convergence. The sequence
{(=1)"} is clearly bounded, but does not converge (it doesn’t even satisfy
the Cauchy criterion: |(—1)" — (= 1)"*!| = 2 for all n).

Examples

9. lim(1/n) =0. Let £>0 be given, and choose the integer N
so that N> ¢~ Then, for n> N,
1 - -
-—0l=n"'<N 1<
n
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10. lim (i"/n) = 0. The proof is the same (see also Problem 2).
11.

2
lim——=2
T
Let ¢ > 0 be given. Now,

n—(n+1) 2
n+1 | n+1

Al

Thus, we need only take N > 2¢™! to verify the condition for con-

vergence.
12.
. n 1 .
lim = " I= <e ifn>e¢g”?
n+1 n+1 n+1

13. im A"=0 for 0<h<1. Since A <1, there is an integer
K>1 such that 2 < K/(K+1). Since the sequence n/(n + 1) is
increasing, we have A < n/(n + 1), all n = K. Now, we shall show by
mathematical induction that A" < K/n for all n. The case n=1 is
clear since K> 1. Now, using the nth inequality we obtain the
(n + Dth:

h"+1=h'h"< n E‘S K
“n+1 n n+1

Thus, if ¢>0 is given, le¢ N>Ke™'. For n>N, [h"—0|
=h"<(K/n) <e.

The study of the convergence of complex sequences is easily reduced to that
of real sequences by the following fact. A complex sequence converges
if and only if the real and imaginary parts both converge.

Proposition 2. Let {z,} be a sequence of complex numbers, z, = X, + iy,.
lim z, = z = x + iy ifand only if lim x, = x andlim y, = y.
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Proof. Suppose lim z, =z. Then, given &¢>0 there is an N such that for
n>N, |z,— z|] <e&. Since

X~ x| < 1zo— 2| and |ya—y|<|za—2z
we also have
x,—x]|<e and |y.—yl<e forn>N

so lim x, = x and lim y, = y. B
Conversely, given & > 0, thereare Ni, N, such that » > N, implies |x, — x| < e/\/ 2,
implies | y.— y| <&/V2. Then
€2 62 1/2
|z — z| = [Ixa — x| + Iy..—ylzl”z<(3+7) =

We have so far been considering questions of this form: Given the sequence
{z,} and the number z, is lim z,=z? A deeper problem is this: Given

n—row

the sequence {z,}, find if possible, a number z such that limz,=z. A
solution of such problems requires a more profound understanding of the
real number system than we have so far needed. A question of existence
is now involved. To resolve such questions we have to have explicit know-
ledge that there are many real numbers, whereas until now we have made use
only of the existence of the numbers 0 and 1. The explicit knowledge desired
here is that provided by the axiom of the least upper bound which roughly
states that there are no gaps in the line or real numbers. A set S of real
numbers is said to be bounded from above if there is a number M such that
x < M forevery x e S. If S is a set which is bounded above, it is conceivably
useful to know the smallest number M which will serve as an upper bound.
We shall refer to such a least upper bound of the set S by sup S (and inf S
will denote the greatest lower bound if it exists). The axiom of the least
upper bound asserts that for a set S which is bounded above, sup S exists.
We shall state this same axiom in terms of sequences because in that form it is
more appropriate to our present context.

Theorem 2.1. Let {x,} be a decreasing sequence of real numbers; that is,
X, = Xp41 for all n.  If the set {x,} is bounded, the sequence converges.

We have called this a theorem since it can be deduced from the axiom of
the least upper bound (see Problem 1), which we can take as a defining
property of the real number system. A consequence of this fact of existence
for the real numbers is the fact that the Cauchy criterion (see Proposition
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1(iii)) is a criterion for convergence. The proof goes like this: first we find
a subsequence of the given sequence which is decreasing. An easy con-
sequence of the Cauchy criterion is that the sequence is bounded. Thus, by
Theorem 2.1 this subsequence has a limit x. It now follows from the Cauchy
criterion that the full given sequence also has the limit x.

Theorem 2.2. Let {x,} be a Cauchy sequence of real numbers. That is,
for every € > 0, there is an integer N such that |x, — x,,| < ¢ whenever n,m > N.
Then there is an x such that lim x, = x.

Proof. First, a Cauchy sequence is bounded. Let ¢ =1; there is an N such that
[Xs — Xm| <1 for n, m> N. Then M =max{|x|, ..., |xy|} + 1 is a bound for {x,}.
Let u, = sup{x.: n > k}. Clearly, the u, are decreasing, and w, > — M for all k, so
by Theorem 2.1 the sequence u, converges, say im u, = u. 'We shall show that also
lim x, = u.

Let e >0. There are Ny, N, such that

|x,.—x,,.|<§ for n,m>N,

|u,‘—u|<§ for k = N.

Let N=N;+ N.. Since uy =sup{x,:n=>N}, there is an no, >N such that
Xno < tiy + (¢/3). Then, combining all these inequalities, we have for n >N,

|xn_u|£ Ixn_xno|+ |xno_uNl+ IuN_u| <eg

Because of Proposition 2 that a complex sequence converges if its real and
imaginary parts do, we can deduce the same theorem for complex sequences.

Corollary. A Cauchy sequence of complex numbers converges.
Proof. Problem 3.

e EXERCISES

1. What are the limits (when they exist) of these sequences:

@ (-4 © {(‘})":
n

b -4 GV Vil G Vi
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n>—2 |
(e) {m} (e) {'—1 sm(n)}
. (1\] I+ 2n*+n+1
o pul)) o P

2. If {x,} is a convergent sequence, then lim(x,.: — x.) =0. Is this a

criterion for convergence?

3. Suppose lim x, =z. Let {y,} be the sequence {Xi+1, Xk+2,...}. Show
that lim y, = z also.

4. Let {s.}, {t.} be two convergent sequences. Show that if they are
convergent sequences with the same limit, then lim(s, — #,) =0. Is the
converse true?

5. What is lim ((z + 1) — V/n)?

6. Show that lim z, =0 if and only if lim|z,| = 0.

e PROBLEMS

1. Let {x,} be a decreasing sequence of real numbers. Prove, using the
least upper bound axiom, that if {x,} is bounded, it is convergent. Deduce
also that an increasing bounded sequence is convergent.

2. Suppose that lim z, =0 and {c.} is a bounded sequence. Prove that
lim ¢,z, =0. If{z}is aconvergent sequence and {c,} is a bounded sequence,

is {c, z.} convergent ? or bounded ?

3. Deduce from the fact that Cauchy sequences of real numbers con-
verge, that a Cauchy sequence of complex numbers is convergent.

4. Let {z.} be a sequence of complex numbers and {c,} a sequence of
positive real numbers such that |z,| <¢, for all #>N,. Prove that if
lim ¢, =0, also lim z, =0.

5. Suppose limz,=2z. Let {y.,} be a subsequence of {z}. Then
lim y, = z also.

6. Let {s.}, {xa}, {t.} be three sequences of real numbers. Suppose that
Sn < xn < 1, for all n.

(a) Show that if lim s, =lim ¢, = ¢, then also lim x, = c.
(b) Show that if lim s, = ¢ and lim(¢, — s,) = 0, then also lim x, =c.

7. (@) Let1>8>h>0. Show that there is an integer X such that for

n>K,(n/(n+1))8 > h.

(b) Let 1 >~ >0. Show that lim nA"=0.

8. Suppose lim z, =z, lim w, =w. Show that

(@) lim|z,| = |z|.
(b) lim(z, + w,) =lim z, + lim w,.
©) limz,w,=limz, limw,.
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2.2 Series

A sequence may be formed term-by-term by adding a little bit to each term.
In this case the limit, if it exists, will be an infinite sum. Such sequences are
probably the most important kind, for in practice what we usually know about
a sequence is the difference between two successive terms. This sequence is
given to us as the sequence of sums of these differences.

Let {z,} be a given sequence. The series formed of this sequence is the
sequence of sums

n
Zl’Zl+22""’21+.'.+Z'l:zzi""
i=1

The series converges if the sequence of sums ) 7., z, converges; in this case
the limit is denoted by > 2, z;.

Example

14. The geometric series Y =, z". Let Sy =Y1_, 2"
Then

Sysr=l+z4+--+2"+ 2" =8, +N"!

Notice also that

Syer=l+zl+z+ -4+20)=1+2zSy

These two equations give us the general term of the sequence explicitly:
1+ zSy =Sy + 2"

or

1 ZN+1

Sy = ﬁ— (z#1) (2.5)

Now, if |z| < 1, then lim Sy = (1 — 2) ™, for

ZN+1

1

_ 1 IzIN+1
1—-z

T

Sy

1—-z
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and lim |z|Y = 0 (Example 13). So given &> 0, we find N, so that
|z|"*! < (|1 — z|)e for n > N,, and thus

Sy <eg for N> N,

T1-z

Notice that we cannot immediately determine whether or not the geometric
series converges for |z| > 1 (of course, for z=1, Sy =N, so the series
diverges). In fact, the geometric series does not converge for |z| > 1, by
application of the following proposition.

Proposition 3. If Y™, z, exists, then the general term must converge to
zero; that is, lim z, = 0.

Proof. Let {s.} be the sequence of partial sums. By hypothesis lim s, exists.
Let ¢ > 0 be given. There is an N such that for #, m > N, |s, — sn] < &. Thus, for
n=N, |2,] = |$p — Sas1] < e

Thus,

! for |z|] <1
r={1-2z (2.6)

diverges for |z| >1

ine

For if |z| > 1, the general term is |z"|. By Example 13, lim(1/|z))" =0, so
{lzI"} gets arbitrarily large and does not converge. If |z| = 1, |z»=1, and the
sequence {1} does not converge to zero.

By the way, the condition lim z, = 0 is not sufficient for the convergence
of the series ), z, as the following examples show.

Examples

15. Certainly the series 1 + 1 + -+ + 1 + - - diverges. But we can
rewrite this as

VFRATIESE L OV VRVRNE T SURIOND S O
272%3T3t3 I i e
~———————r
n

Here the general term tends to zero.
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16. Y3, 1/n diverges. Let sy =YX _, 1/n. Then

1 1 1 1

SZN - Anr

Syv=—— 4 - N -
VNl TN E N T
Thus, {Sy} is not a Cauchy sequence.

The sum of a series of positive numbers is particularly easy to work with.
For if {c,} is a sequence of positive numbers, then the series {)r-; ¢}
is an increasing sequence, so by Theorem 2.1 (as rewritten in Problem 1) this
sequence converges if and only if it is bounded.

Proposition 4. Let {c,} be a sequence of nonnegative numbers. The
following assertions are equivalent.

(i) 3 ¢ converges.

(ii) {ZL L Cx} is bounded.
(iii) For each ¢ > 0, there is an N such that for allm > N,

The proof of the equivalence of (i) and (i) is essentially given in the preced-
ing paragraph. Part (iii) is just the Cauchy criterion restated for positive
series (see Problem 11).

Examples
17. Y, 1/n! converges. For n!>2""* for all , so

1 1
m<2n—1

and thus for all &,
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18.

® (1 1
,,Zl (; T+ cos(l/n))
converges. For

1 1 <1 1
n n+cos(lfn)" n n+1

Thus, for all N
N (1 1 N 1 111
o lm oo = gene
,.;(n n+cos(1/n)) ;(n n+1) 2t 73t
1
N N+1

There is no such simple criterion as Proposition 4 for arbitrary series of
complex (or real) numbers, and the question of convergence as well as com-
putation of a limit can become extremely subtle. However, if for a given
series the series formed of the absolute values converges, the situation is
considerably clarified. Ordinarily we shall discuss the convergence of a
series only in the happy circumstance that the corresponding series of absolute
values converges.

Proposition 5. Let {c,} be a sequence of complex numbers. If ) |c,|
converges, Y ¢, also converges.

Proof. Let 1, be the sequence of partial sums of Z |ex| and s, the partial sums of
> cs. Notice, form>n

m
Cx S z |Ck|=tm—'t,.

k=n+1

5

k=n+1

|sm - Snl =

Thus, if {#,} is a Cauchy sequence, so also is {s,}.

Definition 3. Let {c,} be a sequence of complex numbers. Yo, is
absolutely convergent, if ) |c,| converges. If ) |c,| diverges, but Y ¢,
converges, we say Y. ¢, is conditionally convergent.

There are such things as conditionally convergent sequences. In fact,
Yoo (—=1)"/n converges. But as we have seen in Example 16 the series
=1 1/n of absolute values is divergent. It is easy to see that Y =2, (—1)"/n
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converges. Let {s,} be the sequence of partial sums. Then the subsequence
{s2a} is decreasing, and bounded below by s,, and the subsequence {s,,,,}
is increasing, and bounded above by s,. Thus, both these subsequences
converge. Since

s - S < —
' 2n+1 2n| n+1

they have the same limit. It is easy to deduce that the full sequence also
converges to that common limit. Here is the proof in a more general case
(known as Leibniz’s theorem).

Proposition 6. Let {c,} be a decreasing sequence of positive numbers such
that lim ¢, =0. Then Y (—1)"c, converges.

Proof. Let s, =Zz= 1 (—D¥e.. We consider the sequences of even and odd
partial sums separately. The sequence {s,.} is decreasing, since

S2(n+1)— 82n = C2n42 — C2n41 <0

Similarly, the sequence of odd partial sums {s;,+1} is increasing. Furthermore
these sequences are bounded, for, given any #,

St S2nte1 = S2n— C2n41 X852, < 52

$0 {s2a} is bounded below by s, and above by s.. The same is true for the sequence
{$2n+1). Thus, by Theorem 2.1 lim s, = s, lim §;,.1 = §' both exist. Furthermore,

s — s =1im s2,41 — lim 82, = lim(S2n+1 — §20) = lim(czns1) = 0,505 =s. Since both
sequences, of odd partial sums and even partial sums converge and have the same
limit, the whole sequence also converges to that limit.

Notice that this argument does not give any hint as to the value of
Y (—=1)"/n. Outside of the case of Proposition 4, there is no positive asser-

tion that can be made about conditionally convergent series. In fact, they
tend to behave very badly, as the following illustrative example shows.

Example

19. The sequence

1 1 1 1 1 1+o..+i+---+_1_+--
2tatatatits n 2n
h S ——

2n
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is the same as 1 +1+---+ 1+ --- and thus diverges. Since the
general term is decreasing to zero, by Leibniz’s theorem this series is
conditionally convergent:

JURE NS S SN U U SUDURRE SUINE SUNPSURINE SO
=>"2%37 37371 2n 2n 2n
ntiES

The sequence of partial sums is

and thus obviously converges to zero. However, we may now
rearrange terms of the series so that it no longer converges! Consider
the same series where in each group we first add the positive terms
and then the negative terms:

1
2

2.7

11
0, E’Z’O"”’

b

NN

1
2,

Thus, there is a subsequence: {4, %, ...} and another: {0,0, ...} so
we cannot have convergence of (2.7). We leave to the student
(Exercise 9) to show that it can be further rearranged so that it once
again converges, but this time to one!

No such foolishness holds for absolutely convergent series. We may
attempt to sum the series in any way we please. If we arrive at a limit, it is
the sum. Infact, if ) c, is an absolutely convergent series we may sum first
the positive terms, and then the negative terms; and Y. ¢, is the sum of these
two sums. We conclude this section with the proof of these facts.



2.2 Series 143
Proposition 7. Let ) ¢, be an absolutely convergent series of real numbers.
(i) Let

c+==c" if ¢=0 c‘—{_c" if ¢<0
k 0 if <0 E71 0 if 20
Then the sums Y. ¢, Y. ¢ convergeandy ¢, =Y ¢ =Y cr.

(ii) (Rearrangement.) Let g be a one-to-one mapping of the positive integers
onto the positive integers. Then ) c,oy =3 c,.

(iii) (Regrouping.) Let h be any strictly increasing function from P into P.
Let

h(n)

dn = Z ck
k=h(n—1)

Then Y, d, =Y c,.

Proof.
(i) Since the sequence {>%- |cl} is bounded by absolute convergence, and

Ma

n n
Z lex] = z&;"’, Ci™
¥=1 K=1

k=1

the sequences ZL Lat, Dk-1 ci are also increasing and bounded. Thus they con-
verge to, say s, ¢ respectively, by Theorem 2.1. We have to show that Sen=s—1
Let ¢ >0. Then there are N;, N, such that for n > N,

i &€
o —s <=
AL 2’

and for n > N,

<€
2.

n
Dk —t
k=1

Then for # >max(Ni, Nz),

ick—(S—t)‘=‘ici' —kgc{—(s—t) <e

(ii) Let g be a one-to-one map of P onto P. Then g~* is defined and also maps
P onto P into a one-to-one fashion. For each n, let N, =max(g(1), ..., g(n)).
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Then

n Nn
2 leaml < D e <> |l
k=1 k=1

for all n, so the series Z Coy i absolutely convergent. Similarly,
n Nn n
dSGw<Da<Yet and D <D cr
k=1 k=1 k=1

for all n, so we have 3 cjuy <D cif, > cjy <, ci.  Applying the same reasoning
but reversing the roles of the two series, we obtain the reverse inequalities so that
in fact, > cjwy =2 cit and 3 c;uy =2 ci. Thus, by part (i) we obtained the
desired equality; that is, > cou =, ck.

Part (iii) is actually true for any convergent series. Let> c,=c, and the strictly
increasing function 4 be given. Notice that #(n) = n for all n. For £ >0, there
is an N such that

<e

n
zck_ [+
k=1

for alln > N. Thus, for

" 0 hew
n=>N,>d=2 > =2 ¢
k=1 k=1y=h(k—-1) =1

and A(n) = N, so that

h(n)

<|>e—c
j=1

<e&

i¢—c
k=1

® EXERCISES
7. Show that

(1 1
AZI(E_nH)

converges.
8. What is

2 (~1

n=1

where a;, = 2", azp41 =37
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9. Rearrange the series

1 1.1 1 1 1 1 1 1

ol U S U ED N e S R

2 2 4 4+4 4+ +2n 2n+ 2n+
|

so it has the sum one.
10. Can the series z (—1)"/n be rearranged so as to have sum 10,000?

e PROBLEMS

9. Suppose > z, =z and 3 w,=w. Show that > (z.-+w.) =z+w.
10. Suppose .
(@) 3 z, and lim w, exist. Does ), z, W, exist?
() 3 z,and > w, exist. Does 2, z,w, exist?
11. Prove that > z, converges if and only if for all £¢>0, there exists an
N >0 such that

> <& foralln >N

k=N

Zx
+1

Deduce that Proposition 4(iii) is true.

2.3 Tests for Convergence

Since the theory of series is so important and the definition of convergence
unwieldy, there has developed a large collection of tests (or criteria) for
convergence which are more or less easy to apply in the relevant cases. We
have already given some criteria for convergence.

(1) Cauchy criterion: Y. ¢, converges if and only if for every & > 0, there
is an integer N such that |c, ., + -+ + ¢,| <efor allm>=n=N.

(2) If the sequence {c,} decreases to zero, then z (—1)"c, converges.

(3) If the sequence {c,} is nonnegative, Y ¢, converges if and only if the
sequence {)7_, ¢} of partial sums is bounded.

The last condition, which can be considered as a condition for absolute
convergence, gives rise to the following criterion which is the basic one.
The idea is to compare a given series with a known convergent one (if we
suspect that it converges) or to a known divergent one (if we suspect that it
diverges).
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Examples
20. Y 1/n! converges, as we have seen in Example 17. There, we

noticed that 1/n! <27"*!, and since } 27"*! is convergent, so is
Y. 1/n!. For

N /1 N o 1
,,;1(—;1_'-) < nzl 2n—1 < n;[ ? forall N

21.
[+ . 5
L)

diverges. For if x is small enough, sin x > x/2. Thus, there is an
Nsuchthatifn > N,

in(5)> >
s n]  2n

and thus form > N,

N+¥1 R

nilsin(g) = ”isin(S) +g i 1

But we can make the last sum as large as we please by taking m large
enough. Thus, Y™, sin(5/n) is not bounded, and so it is not con-
vergent.

22.

8

1
o (1 +19)

is absolutely convergent. For |1 +i| = \/ 2, so for any m,

ZO 1+i|"=,.=o(\/§)n<°o since\/2>1

mo 1 @ 1
n=o |

The idea behind these examples is contained in the following theorem.
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Theorem 2.3. (Comparison Test) Let {c,} be a sequence of complex numbers.
If there is a positive number K and an N, and a sequence {p,} of positive

numbers such that

@) le) <Kp,, forn=N,
(i) ¥ pn<oo,
n=1

then Y. c, converges absolutely.
If instead, we have

@) le) 2 Kp,,  forn=N,
(ll)’ _len = (x)’

then Y |c,| diverges.

Proof. 1In the first case the sequence of partial sums is bounded.

i lel = i lex| + i Jexl Sé:ﬂﬁ:l + KD pn<©

k=1 k=1 k=N+1

In the second case, the sequence of partial sums is unbounded.

n N n N n
z leul = 2 lewl + Z lexl = z lexl + Z DPn
k=1 k=1 k=N+1 k=1 k=N+1

which is unbounded as n — 0.

Examples

23. Y2, z"/n! converges absolutely for any complex z. Choose
an integer N so that N >2|z|. Then, for all n, (N +n)! = (2[z])",

so that
|Z|N+n lle
(N+n)!~ 2

Since Y 1/2" converges, so does Y |z|"/n! by the comparison test. As
a corollary result we obtain lim z"/n! = 0 for all z (this however could

have been derived directly).
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24. Y n*z" converges absolutely for all z, |z] < 1 and all integers k;
and otherwise diverges. If [z] > 1, then lim n*z #0, so the series
can hardly converge. Now suppose |z| <1. We want to prove the
convergence by comparison with the geometric series, so we must
account for the effect of the coefficients n*. Note that (n + 1)/n — 1
as n — oo, thus also (n 4+ 1)/n* - 1 (Exercise 13). Let s be any number
greater than 1. Then there is an N such that for alln > N,

(n+ 1)
nk

<s or (n+1y<sn*

Thus, by induction we can conclude that, for all n > 0, (N + n)* < s"N*,
Thus, (N + n)*|z|V*" < (5| 2[)"N*)z|¥. We should choose s < 1/|z],
so that Z,, (s|z|)" < oo. With the choice then of s5: 1 <s<1/|z|,
we can apply the comparison test to obtain the convergence of our
series ). n*z".

25. Y n!z" diverges for all z#0. We have seen in Example 2
that for any complex number ¢, lim ¢"/n! = 0, or, replacing ¢ by z™!

n—+w
lim 1/n!z" =0. This precludes the possibility that limn!z" =0,
n—>o

so the given series cannot converge.

26. ) 1/n* converges. In a later section we shall give another
proof of this, at present we rely on a tricky observation.

¥ /1 1 1
- =1 = ——
nzﬁ(n n+ 1) N+1
Thus, the series
1 1
Z (;1- T+ 1)

converges to 1. But

1 1 1

® 1
,,;1 n(n + 1)= 1
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Now, 2n® > n? + n = n(n + 1), thus

so by comparison )" 1/n? also converges.

27. Y 1/n"*® converges for any ¢>0. Let k be an integer so
large that ke > 2. Then, for any n; if m > n,

1 1 1

< <
Mo = pk(i+e = JiTa

Between n* and (n + 1)* there are (n + 1)* — n* integers. Since

k
(n+1) -1
n

thereis an ng such that forn > ny,(n + D)* < 2n*, or (n + 1)* — n* < n-,

Thus,
(n+1)* 1 < n* 1
=St e1 ma+a = pk+2 = n?

Well, now we can show that the sequence of partial sums

5

n=1

is bounded, for

g | ng* | Nk 1
< + 1+
nzl nd+o ";1 n1+a n=nozk+1 pttte
. N (n+1)e 1
<ng +
0 FZM meSe1 ma+o
Kk v 1 k 1
Snf+ Y FSnftY <o
n=no N n

Now a special kind of a series is a power series: the geometric series, and
the series in Examples 24 and 25 are such series. A power series is a series



150 2. Notions of Calculus

of the form

o

Y a,z"

n=0
Such a series has the property that if it converges for some z,, then it con-
verges for all z such that |z| < |z,|, and if it diverges for some z;, then it
diverges for all z such that |z]| > [z;|. Thus, the geometric series diverges
for |z| = 1 and converges for |z| < 1; the series Z z"/n! converges for all z,
and Zn!z" converges for no z. This general property of power series is
easily deduced from the comparison test. We make the following somewhat
stronger statement.

Proposition 8. Let {c,} be a sequence of complex numbers.

() If {| c, |t"} is bounded for some positive number t, then " ¢, 2" converges
absolutely for all z, |z| < t.
(i) If {| ¢, |t"} is unbounded, then ' ¢, 2" diverges for all z, |z| > t.

Proof.
(i) Suppose M > |c,|t"for all n. Let z be such that |z| <¢. Then

lz| |z|

lenz"| < ic,,lt"(T)n gM(T)" for all n

and since |z]/t <1, Z (|z|/£)" < o0, so by the comparison test the series S a2
converges absolutely.

(ii) If {|c.| 1"} is unbounded so is {c,z"} for all z, |z| >¢. Thus, we cannot have
lim ¢,z" =0, s0 . ¢,z" cannot converge.

Definition 4. Let {c,} be a sequence of complex numbers. The power
series associated to {c,} is the series ) 2 a,z". The radius of convergence
of the power series is the least upper bound R of all real numbers ¢ such that
the sequence {|c, |t"} is bounded.

According to Proposition 8 the series Y ;2o a,z" converges for z inside
the disk of radius R(|z| < R), and diverges for z outside that disk (see
Problem 12).

Examples

28. Y, z"/n has radius of convergence one. For if 7> 1, then
{t"/n} is unbounded, and if t < 1, t"/n - 0. Notice that we can make
no clear assertion for z on the unit circle, since Y 5>, (1)"/n diverges,
but Y2 o (—1)"/n converges.
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29. If {c,} is bounded, but does not tend to zero, > =2, ¢,z" has
radius of convergence one. For clearly {c,t"} is bounded for t < 1,
and unbounded for t > 1.
There are two final tests of some importance. These are as follows:
Root test. If eventually
(le,D"<r  forsomer <1
then Y ¢, converges absolutely. If there are infinitely many » such that
(l¢,)'">R  for some R > 1
then ) ¢, diverges.

Ratio test. If there is an r < 1 such that eventually

Coti
Cn

<r<l1

then ) ¢, converges absolutely. If

Cnti
C

>R>1 for infinitely many n

n

then Y c, diverges.

These are both derived by comparison with the geometric series. We leave
it to the student to derive these tests (Problem 13). Let us here indicate why
the convergence assertions are true. Suppose (| c, D" < r <1, for n large
enough (say n > N). Then |c,} < r" eventually, so the partial sums Y. el
are bounded by

L 1
,,;()Ic'lI + l—r

by comparison with the geometric series. As for the ratio test, suppose

C
2ty forn>N
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Then we have

le+1l <rleyl
lens 2l < rlenaal <r?|eyl

lew+sl <rlexl
lew+a < r¥lenl
by induction. Thus, Y™, [c,| < YN_o leal + leyl Y r* < o0 since r < 1.

o EXERCISES

11. Which of the following series converge?

@ 2 sin('ll). e 2 ﬁ;i—i‘
© > tan(%) . ® 3 23 .
@ > tan(%) - sin(%). th > (7’;'7' x" x>0,

1
o > '-17 x", k a positive integer, 0 <x < 1.
n

) 1 1 1 1
@ 2 (=1rsin—. () Z(F+(n+1)2+(n+2)’)'
n 11 1
&) Z(—l)n+1- @ Z(Z_n+1+n+2)'
DS (=1 —,

12. Verify directly that lim z"/n! = 0 for every z.
13. Suppose lim ¢, =c¢. Then for any integer &, lim ¢* = ¢*.
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14. Find the disk of convergence of the following power series.

@ éozn. ) éon!zn.
® 3 ® 3=
© 3 (:!")2 @ 3+ nkyzn
@ 20(2"—':)'2 QM S

© S(z) @ Sa+an

¢ PROBLEMS

12. Let {c,} be a sequence of complex numbers, and let R be the radius
of convergence of the power series > c,z". Show that > caz" converges
absolutely for |z| < R, > ¢, z" diverges for |z| > R.

13. Derive the convergence and divergence assertions of the root and
ratio tests.

2.4 Convergence in R"

The notion of convergence of a sequence of vectors is easy to conceive,
since a vector in R” is just an n-tuple of real numbers. Thus, a sequence of
vectors is an a-tuple of real sequences, and the question of convergence of
the vector sequence is just that of the simultaneous convergence of those n
real sequences. We might also directly paraphrase Definition 2 of conver-
gence, using the notion of distance in R” discussed in Chapter 1. These two
possible notions are in fact the same.

Definition 5. Let {v,} be a sequence of vectors in R". The sequence
converges if there is a vector v € R” such that to every positive number ¢ > 0
there corresponds an integer K such that ||v, — v|| <& for k > K. We write
klim v, = v if {v,} converges to v.

a0
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Thus, lim v, = v means precisely that lim ||v, — v|| = 0; that is, the distance
between the general term v, and v tends to zero as k becomes infinite. When
put this way it sounds like just the notion we have in mind. Recalling that
in Section 2.1 we said that a complex sequence {c,} converges to ¢ precisely
when |¢, — ¢| - 0, we see that this coincides with the above definition when
n=2. Now, if we write out the sequence v, of vectors in R" as an n-tuple

=@ 00 (2.8)

we can view the given sequence as the n real sequences {v,’}, where
j=1,...,n. We now verify the fact mentioned above, that v, — v precisely
when v,/ > ¢/ for all j. Notice that Proposition 2 is that fact in the case
of R2.

Proposition 9. The sequence (2.8) converges to the vector V= @ ..., 0"
if and only if lim v,/ = v/ for all j.
k—

Proof. If w=(w!, ..., w") is a vector in R", then by definition
Iwil =, (wh» 2
Then, in particular
o —v|<lw—vll Jj=1,...,n 2.9

Suppose now that v, —v. Then, given £ >0, there is a K such that |lv, —v|| <e
for k> K. Thus, by Equation (2.9) for each j, v,/ — v/| < e for k> K. But this
means precisely that lim v,/ = v/,

k=
Conversely, if v’/ — v for all /, then (v’ — v/)> =0 for all j, so [ (v — v/)*]'2 =
|lve — vll—0 as k — co. But then, by Definition §, v, ->v.

In precisely the same way we can verify that if the sequence of vectors (2.8)
satisfies a Cauchy criterion so do each of the real sequences {v,’}, and thus
are convergent. Hence, by Proposition 9 the sequence of vectors {v,} also
converges, so we have a Cauchy criterion for vector sequences also. This
fact, as well as some basic algebraic properties of convergence of vectors is

easily verifiable. Accordingly, we make these assertions, leaving the proofs
to the reader.

Proposition 10. (Cauchy Criterion) Let {v,} be a sequence of vectors in R".
Suppose to every € > 0 there corresponds a K such that ||v, — v,|| < & whenever
both r,s > K. Then the sequence {v,} is convergent.
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Proposition 11.  Suppose lim v, = v, lim w, = w, lim ¢, = ¢, where {v,},
{w,} are sequences of vectors in R", and {C,} is a sequence of real numbers.
Then

() lim(vp +w)=v+w,
(i) Imdv, W) =V, w),
(iii) lim ¢y, = cv.

Example

30. Let us find a point of a given plane in R?® which is closest to
the origin. A plane is given by the equation {x,a) = ¢ for fixed
a,c. Let m=glb. {||x]|; <x,a) =c}. Choose a sequence {x,}
on the plane such that |x,| - m. We shall show that {x,} actually
converges. Now,

“xn - xm”2 = ”xnuz + “xm"2 -2 <xn, xm> (2'10)

We can estimate the last term by using the fact that the midpoint
(x, + x,,) between x, and x,, must also be on the given plane.

1 2 x,) 2 g
m2 < Hz(xn + xm) = ”x;” + HXZ“ + 5 <X", xm>
Thus,
= 2%y, X < %017 + [ %112 — 4m? (2.11)

Combining (2.10) and (2.11), we find that
%0 — X1 < 201,12 + 1% l1* — 2m%) (2.12)

Now, since |x,| — m, if ¢ > 0 is given, there is an n, such that for
n,m=>ny, we have ||x,| <m +¢, |X,| <m+e. Inequality (2.12)
then gives

IX, — X,,]|% < 2((m + €)% + (m + £)> — 2m®) < 4me + 26% = &(4m + 2e)

This can be made as small as we please by choosing & small. Thus if
n, m are large enough, |X, — X,/ is small, so the sequence {x,} is
Cauchy, and thus convergent. Ifx = lim x,,then |x|| = lim|x,| = m,
so x is the closest point on the plane to the origin.
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Let us pause for a moment to consider the reasons, as illustrated by the
above example, for studying the convergence of vectors. The central prob-
lem of calculus is to find an object, usually considered as a point in a given
collection of points, which has certain specified properties (i.e., the maximum
of a given function, or a zero of a function). At least, the theoretical aspect
of the problem is to prove the existence of a point with such and such
properties. Our technique for doing this is to use the desired properties to
develop a sequence of approximations; our hope is that the approximations
will converge; and that the limit will have the desired properties. It is thus
essential to be able to discuss the question of convergence without already
knowing the limit. Hence, for example, we have-the Cauchy criterion.
Further, we will need techniques, or criteria, to apply to the given properties
in order to be able to extract the desired Cauchy sequence of approximation.
For example, we will want to know: (a) If we have a convergent sequence
of points having a property, does the limit have that property? (b) If we
have a sequence of points having a property, does the sequence converge?
or, at least does it have a convergent subsequence? These questions lead
us to the reconsideration of the closed sets introduced in Section 1.11.

Recall that a closed set in R" is a set whose complement is open. More
precisely, S is closed if and only if corresponding to every v ¢ S, there is an
£ > 0 such that any vector within & of v is also not in S. In particular, if S
is a closed set, and v ¢ S, then v cannot be the limit of a sequence of vectors
in §. To put it positively, a closed set contains the limits of all convergent
sequences it contains. This is in fact a defining criterion for closedness:

Proposition 12. Let S be a set in R". The following assertions are
equivalent:

(i) S is closed.
(i) If {v} is a convergent sequence contained in S, then lim v, € S.

Proof. Suppose S is closed. Let {v} be a sequence contained in .S and suppose
it converges to v. If v ¢ S, since S is closed, there is an & > 0 such that no vector
in S gets within ¢ of v. This is nonsense since v is the limit of a sequence in S.
Thus, we must have ve S.

Suppose now S is not closed. Then there is a v ¢ S such that for every ¢ >0
there is a vector in S which is within ¢ of v. in particular, for each n, taking

€ =1/n there is a v, such that |Iv,— v||<1/n and v,€ S. Thus, v, —v so (ii) does
not hold for S.

We are now in a position to state our last basic consequence of the funda-
mental existence axiom for the real number system. This is that every
bounded sequence in R” has a convergent subsequence. It is easy to derive
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this from the Cauchy criterion, itself an assertion of existence. Let us
illustrate the situation in R%.  Suppose {c¢,} is a sequence of complex numbers
which is bounded; that is, it remains in some fixed square S, of side length K.
Cut that square into four equal squares. At least one of these new squares
has infinitely many of the {¢;}; let S, be one such square. Cut S, into four
equal pieces and let S, be one of these new squares which has infinitely many
of the {¢,}; now do the same with S, and so on (see Figure 2.4). In this
way we obtain a sequence of squares {S,} with the properties:

(l) Sn > Sn+1:
(ii) side length of S, is K/2",
(iii) S, has infinitely many of the {c,}.

Now that this is done, we can, for each integer n, select a k(n) such that
Cuemy € Sn» and {Cy(ny} forms a subsequence of {c,}. (For this we need to
know that S, contains infinitely many {¢;}, so that we can choose k(n) greater
than any previously chosen index.) Now, {c¢,} is a Cauchy sequence.
For let ¢ > 0, and choose N so that &> K\/E/ZN. Then, if n,m > N, we
have ¢y, Chmy € Sy > 8O

K\? (K\* K2
lck(n)—ck(m)|<\/("2‘ﬁ) +(?) ='_2N_<3

Since the sequence {c;,} is a Cauchy sequence, by Proposition 10 it con-
verges, and the argument for R? is concluded. This is the basic idea of the
verification of

RN

Figure 2.4
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Theorem 2.4, Every sequence in a closed and bounded set S in R" has a
subsequence which converges to a point of S.

Proof. Suppose that § is closed and bounded and {v;} is a sequence in §. We
shall find a Cauchy subsequence. Since the sequence is bounded, it is contained in
some ball B(O, R). This ball can be covered by finitely many balls of radius 1.
Since the {v;} are infinite, there is one such ball which contains infinitely many. Call
it By, and let v,y € B;. B, can be covered by finitely many balls of radius 4. Let
B, be one such which contains infinitely many of the {v,} and let v, € B, with
k(Q2) > k(1).

Continuing in this way we obtain a sequence {B,} of balls, a subsequence {v,} of
{vi} such that (i) B, has radius 1/n, (ii) Vim € By, (iii) B, > B,,1. Then {v,,»}isa
Cauchy sequence, for if n, m > N, v and vier € By which has radius 1/N, so

2
[Vicay — Viemy || < N forallu,m>N

By Proposition 10 there is a v such that v, —v as n— 0. Since Sis a closed set,
and {viny} € S, we also have v € S, so the theorem is proven.

Example

31. The unit sphere S = {xeR": x| =1} is closed. For if
X, — X, then certainly ||x,|| - [x||, soif x, € S, sois x. Now suppose
T is a linear transformation of R" to R". We want to know if there
is an x € S at which |Tx| is a maximum. First of all, the set of
numbers of the form ||Tx| with x € S is bounded. Let 4 = (aji) be
the matrix representing T, and M = max |a jil. Then

Tx =T, ..., x) = a;'x’, ..., Y a;"x))
$0

ITx) = [(Y a'x)? + -+ + (¥ a/x)?1? (2.13)
< [nM? |x]|* + -+ + nM? |[x]*]'/? < nM ||x|

Thus, nM is the desired bound. By the least upper bound axiom then,
m =sup{|Tx|: x € S} exists, and there is a sequence {x,} = S such
that ||Tx,| - m. According to the above theorem there is a sub-
sequence {y,} which converges, say to y. Since ||Tx,| — m, we also
have ||Ty,|| — m, and by (2.13), in fact |Ty| = lim||Ty,| = m.
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¢ PROBLEMS

14. Prove Proposition 10.

15. Prove Proposition 11.

16. Let IT be a plane in R?, and suppose X, is the point on IT which is
closest to the origin. Show that if x € IT, then x, is orthogonal to x — x,.
(Hint: If not, then one of x — Xo, X + X, is closer to the origin than Xo.)

17. Find the point on the plane given by the equation x, (1,1, 1)>=3
which is closest to the origin.

18. Find the point on the plane <x, (1,0, 1)> =2 which is closest to
—(1,1,1).

19. Let L be a linear function from R" to R* Show that the kernel and
range of L are both closed.

20. Let L: R"— R be a linear function. Show that if lim x, =x, then
also lim L(x,) = L(x).

21. Let vo be a vector in R”, and IT the set of x such that ¢x, vo> =c.
Show that IT is closed.

22. Show that for any v, € R" and r >0,

{(veR" |lv—vo| <r}

is closed.
23. Show that v, —v in R" if and only if

max |v’ — v!| >0
15i<n

2.5 Continuity

We turn now to the consideration of functions from subsets of R” to R™.
The basic notion of analysis being that of convergence, the fundamental
class of functions will consist of those which respect convergence; that is,
those which take convergent sequences into convergent sequences. These
afe continuous functions.

Definition 6. Let S be a set in R", and f a function defined on S, taking
values in R™. fis continuous on S if whenever v, » v with v, € S, all k, ve S,

then f(v,) — f(v).

We shall be concerned most usually with the local study of a function near
a given point. For this purpose we make this additional definition.
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Definition 7. A function f from a set in R", taking values in R™, will be
said to be continuous at v, € R” if £ is defined in a neighborhood of v, and

v—v, implies f(v) = f(vo).
Examples

32. f:R">R,f(v)=|lv| is continuous. For if v,—v, then
v, — v|l = 0 so that |v,]| — ||v|| since

RAAER A AN Al

33. f1C—-C, f(z2)=Z is continuous: z,—z implies |z, — z|
= |z, — Z| = 0, so that also z, — Z.

34. A linear function on R" is continuous. Let

f@' .., =Y a0 (2.19)

Then, if v, — v we have v} —>v',..., 5" > 1", so that Y7, ap’' —
Y7, ap' since the limit of a sum is the sum of the limits. Thus,

Fv)—f ).

Roughly, the idea of continuity of a function f is this: as a moving point
p gets close to p,, the value f(p) of fat p gets close to f(po). That is, we can
ensure that f(p) is as close as we please to f(p,) by choosing p sufficiently
close to p,. This leads to the so-called “¢ — 8 criterion for continuity,
which we now give.

Proposition 13. Let S be a subset of R", and let f be an R™ valued function
defined on S.

(i) Let xo€ X. fis continuous at X, if and only if, to every & > 0, there
corresponds a 8 > 0 such that |x — X, || < 6 implies || f(x) — f(xg) || < &.

(ii) If S is open, f is continuous on S if and only if f is continuous at every
point of S.

Proof. (i) Supposing first that the & — & criterion is true, we shall show that f
is continuous at X,. Let x,—>X,. We have to show f(x,) = f(Xo). Given £ >0,
there is a 8 > 0 such that whenever x is within 8 of x, we have ||f(x) — f(Xo)|| <&.
Since x,—X,, there is an N such that » > N implies |x, — Xo|| <9d. Thus, for
n>N, [If(x:) — f(x0)]| < €, as desired.
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Conversely, if the £ — 8 criterion is false, then there is an &, such that for every
8 >0 there is an x, for which [x — xoll <8 but [|f(x) — f(xo)|| > 5. Selecting

8':1; LR B ]

1
n

[ SN
W

we obtain the corresponding sequence X, X1z, ..., Xi/n, which converges to x,.
But f(x1/s) + f(X0) since the f(x1,») are always outside the ball of radius &, centered
at xo.

Part (ii) is left as an exercise.

Examples
35. f: R* > R defined by

5x
1+ y?

f(xs y) =

is continuous at (0, 0). For

5x
‘1 +yzls Six] < 50(x, »

Thus, if ¢ is given we can choose 6 = ¢/5. Then ||(x, y)| < J implies

5x
'-1+—y2 <50 =¢
36.
3
- rz
f(x9y:z)_1+x2+22

is continuous at (0, 0, 0). We have

3

yz
15, 3,2) = 10,0,00 = |

| < Y2 < lx, y, DI
2 + 72

Thus for each & > 0 choose = ¢* =¢. Then [(x, y, 2)| <& implies
Lf(x, p, 2l <8t =e
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37.

_(x+p?

N =

(x,y)#(0,0)  f(0,0)=0

This function is not continuous, since

42
ft, %) =55 =240

If we redefine f(0, 0) = 2, this new function is still not continuous,
since

2

y
O, =15=12

38. We can easily verify the continuity of the linear function (2.14)
by the ¢ — § criterion. For

If() =f) | =Y a@’ —w) | <@, ..., a)] lIv—w]|

by Schwarz’s inequality. Thus, if ¢>0 is given, we can take
d=|(a',...,a" | te. Then ||v— v,| < & implies |f(¥) — f(vo)| <e.

The facts concerning convergence discussed in previous sections have
application to the study of continuity, as might be expected. In particular,
the assertion that every sequence in a closed bounded set has a convergent
subsequence has profound significance for the behavior of continuous func-
tions. Here is an important illustration.

Proposition 14. (Intermediate Value Theorem) Let f be a continuous

Junction on the interval {x € R: a < x < b}, and suppose that f(a) <y < f(b).
Then there is a c in the interval such that f(c) = y.

Proof. We seek (as in Figure 2.5) not just a point at which the value of fis y,
but more precisely the first such point ¢. We must find a way to describe this
point which permits us to use the existence theorem. If x <c¢ we must have
f(x) <7, otherwise the graph of fcrosses the line y = y between a and ¢. Thus, ¢
is a lower bound for the set of x such that f(x) > . Since c is in that set, it must
be the greatest such lower bound. So if there exists a first ¢ at which f(c) =y, itis
the greatest lower bound of {x e R:a <x <b, f(x) =>y}. We now show that this
point (which exists by the least upper bound property) is the desired c.
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Letc=glb{x:a<x<b, f(x) =v}. Thencisalimitofa sequence {x,} in this
set. Since y < f(x.) we must also have y <lim f(x,) =f(c) since fis continuous.
Now, if f(c) 7y, we must have f(c) >y. Again, by continuity, there is a 8 such
that if |x — c| < 8, then

f@—y

/() —fl)l < 5

from which it follows that for all x between ¢ and ¢— 8, f(x) >y. Thus,
flc— 8) =, contradicting the definition of ¢ as a lower bound for the set of x
with f(x) >y. Hence f(c) >y is impossible, so we must have f(c) = y.

Now, the most important fact about continuous real-valued functions is
that they are bounded on closed and bounded sets. This follows easily
from Theorem 2.4. If] say, f is continuous and not bounded above on the
set S, then, for every positive integer #, there is an x, € S such that f(x,) > n.
If S is closed and bounded, {x,} has a convergent sequence {X,4}. Let
lim X, = Xo. Since f is continuous, f(Xo) = lim f(x,q,) > lim n(k). But

k= k=0

n(k) — oo as k — o0, so this is impossible. Thus f'is bounded on S. What is
more it attains its least upper bound. For if m is this least upper bound,
but is not a value of f, then g(x) = (f(x) —m)~! is an unbounded function
on S, again a contradiction. To conclude: if fis a continuous real-valued
function on a closed and bounded set S in R", then there are x;,x, €S
such that

f(x;) = sup{f(x): x e S}
f(x;) = inf{f(x): x € S}

Figure 2.5
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Here are the proofs in a slightly more general context.

Theorem 2.5. Let f be a continuous R™-valued function on the closed and
bounded set S in R". Then the set of values of fon S,

f8) ={f(®:xeS}
is closed and bounded.

Proof. First, f(S) is closed. Suppose y,€f(S) and y.~>ye€ R" We must
show that y € £(S). But this is easy. Since y, € f(S), there is for each n, x,€ §
such that f(x,) =y.. Since S is closed and bounded there is a subsequence {z:} of
{x.} which converges, z. —~z € S. Since fis continuous, (z) —>f(z). On the other
hand, {f(z.)} is a subsequence of {y.}, so f(z)—=y. Thus f (z) =lim f(z) =y and
yef(S).

If £(S) is not bounded, there is for each # an x, € S such that | f(xs)|| =#. But
{x,} has a convergent subsequence {z.}. Let limz, =2. Then lim f(z,) = f(2).
But {f(z)} is a subsequence of {f(x,)}, so [|f (@)l o, which is impossible since
{f(z)} is convergent. Thus, f(S) must be bounded.

In particular, suppose f is a real-valued function defined on the closed and
bounded set S. Then f(S) is bounded, so M = sup{t: 1 € f(S)} exists, and
since f(S) is closed, M € f(S). Thus there is an x, € S such that

f(xy) = sup{f(x): x € 5}

Similarly, there is an x, such that f(x,) = inf{f(x): x € S}. This basic fact
we state as

Theorem 2.6. A continuous function attains its maximum and minimum
on a closed bounded set.

o PROBLEMS

24. Let x, € R". Show that f(x) = <x, X,) is continuous on R".

25. Show that a linear function L: R* — R™ is continuous.

26. Prove part (ii) of Proposition 13.

27. Show that if fis a continuous real-valued function on a closed and
bounded set S, there is an x; such that f(x;) = glb.{f(x): xe S}

28. Suppose that f, g are R™valued functions continuous at po € R"
Show that f+ g and <f, g)> are also continuous at po. If ¢ € R, then also
¢f is continuous at po .
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2.6 Calculus of One Variable

Theorem 2.6, which asserts that a continuous function attains its maximum
and minimum on a closed and bounded set, is the fundamental theoretical
tool of the calculus. We shall now give a brief review of the fundamentals
of calculus, leaving the recollection of techniques to the student’s memory.
We shall give brief justifications of some of the more basic or special facts.

First of all, we studied in the calculus a limit concept which was more
general than the sequential limit we have been studying. We recall the
definition.

Definition 8. Suppose f is a real-valued function defined in a set
{x:0<|x — x| <6y}

We say lim f(x) = L if and only if, for all & > 0, there is 6 > 0 such that
|x — x| < & implies [f(x) — L| <.

First of all, the relationship between the two concepts of limit is an easy
one: lim f(x) = L if and only if for every sequence x, converging to x,, we

X3Xx0

have limf(x,) = L. We can thus rephrase the notion of continuity using
n—+w
Definition 8. fis continuous at x, if and only if lim f(x) = f(x,).

X=rX0

Proposition 15.
(i) Suppose f is defined in I = {x:0 < |x — xy| <8}, Then limf(x)=L

x=x0

if and only if, for every sequence {x,} in I such that x, — x, we have
lim f(x,) =L
(ii) If f is also defined at x,, f is continuous at x, if and only if

lim £ () = f (o)

X—*Xx0

Proof. We will prove only (i). The proof of (ii) is the same and is left as a
problem. Suppose first that lim f(x) =L. Let {x,} be a sequence such that

x=Xx0
X.—>Xo. Given ¢ >0, there is a 8 >0 such that |f(x) — L| <& for any x such
that |x — x,| < 8. Now since x,—>xo, there is an N such that for =N,

|, — xo| <8, Thusif n>N, |f(x;) — L} <e&. Thus, f(x.)—L.
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Now suppose lim f(x) = L is false. Then there is an &, such that for every )

X=+x0

we can find an x, such that |x; — xo| < §but | f(x) — L| > &. Consider the sequence
{c.} of x’s for 8=1,3%,...,1/n, .... Then |c.— xo| < 1/n, so certainly c.—xo.
But f(c,) is always outside the interval of width £ and center L, so it cannot converge
to L.

Definition 9. Let f be a real-valued function defined in an interval about
xo € R. fis differentiable at x, if the limit

i [G0 + 1) = £(xo)

t—0 t

exists. If it does the limit is called the derivative of f at x, and is denoted

oo o Ly

If fis differentiable in an interval I and the derivative f” is also differentiable
there, then f is said to be twice differentiable on [ and (f”)" is the second
derivative of f and is denoted by

" dzf
f" or 7
The higher derivatives £, ..., f®, ... are defined successively in the obvious
manner. A function which has derivatives of all orders on the interval will
be said to be infinitely differentiable there. If f, g are n-times differentiable
on I, so are f + g, fg, and ¢f for ¢ a real number. If fis differentiable in an
interval I it is continuous there. If fis differentiable at a point x, where it
attains a local maximum (or minimum), then f’(x,) =0. This, together
with Theorem 2.6 gives this basic existence theorem.

Theorem 2.7. (Mean Value Theorem) Let f be differentiable on the closed
interval [a, b). There is a point & € (a, b) such that

R 215
—a

Proof. This theorem has a nice geometric interpretation (Figure 2.6). Thereisa

point (£, £(£)) on the graph y = f(x) at which the tangent line is parallel to the line

through (q, f(a)) and (b, f(b)). Clearly (see Problem 30), we need only verify this

when the latter line is horizontal, that is, f(b) =f(a). In this case, let & € [a, b],
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~-—- -

[~}

Figure 2.6

&1 € [a, b] be the points at which f attains its maximum and minimum respectively
on the interval (Figure 2.7). If either &, or &, is interior, then fhas a local maximum
there, so f'(€) = 0 for the appropriate £, If this is false, then {£,, &} are the points
{a, b}, so f(a) =f(b) is at once the maximum and minimum of £. Thus, fis constant
on [a, b}, so f’ is identically zero and we can choose any point for our £.

Now suppose that f is a differentiable function defined on the interval
[a, b], and g is a function defined on the range of £, and differentiable there.
Then the composed function & = g o f, defined by

h(x) = g(f(x))

is also differentiable on a, b. For if x, € [a, b], then

hx) = h(xo) _ g(f () = 9(f(xo)) f(x) = J(x0) 216

X = Xo f(x) = f(xo) X = Xo

(b0, f(40))

(&, f(&:))

Figure 2.7
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Taking the limit on both sides, we have (since x — x, implies f(x) — f(x,)),

li M = hGx) 9D = g0 ) = f(%o)

xoxo X — X s~y f(X) = f(x0)  x-x, X — X

The limits on the right exist since fis differentiable at x,, and g is differentiable
at f(x,), so the limit on the left exists. Thus 4 is differentiable and we obtain
the chain rule:

K (xo) = (g < f) (x0) = g'(f (xo))f "(x0)

(Notice that if f(x) = f(x,), then (2.16) is invalid and the proof breaks down,
However, that case can be treated separately.)

If fis a function from the interval [a, b] to the interval [«, f] and there
exists a function g: [«, f] — [a, b] such that

gef(x)=x  forallxe[a,b]
feg()=y forallye[w f]

we say that £ is invertible and g is its inverse. The mean value theorem gives
us a condition under which a differentiable function is invertible. If a
function f has an inverse, it must be one-to-one. From (2.14) we see that
this will be guaranteed if f” is never zero. This is the sufficient condition
for the invertibility of f.

Theorem 2.8. Suppose that f is a continuously differentiable function defined
on the interval [a, b], and f’ is never zero. Let f(a) = o and f(b) = B. There
is a continuously differentiable function g defined on the interval between
o and B such that

gf(x)=x and ¢(f(x))= forall x

L
e

Proof. fis one-to-one. For if a<a, <b, <b, there is, by the mean value
theorem a £ between a; and b, such that

S —fla) =f'(E)br— a1) #0

by hypothesis. Thus f(b,) # f(a;). By the intermediate value theorem every y
between o and § is attained by . Now we can define g as follows: let g(y) be that
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x such that f(x) =y. Clearly, g(f(x))=x and f(g()) =y. Now g is differ-
entiable:

lim IO) =800 _ L X=X 1 1
0 Y= Yo wof(x) —f(x0) x50 Lf(0) = fx0)/x — X0 ['(xo)

A further fundamental fact to be drawn from the mean value theorem is
this: A function is determined, up to a constant, by its derivative.

Theorem 2.9. Suppose that f, g are differentiable on the interval [a, b]
and that f'(x) = g'(x) for all x € [a, b]. Then there is a constant C such that

f) = 9() + C

Proof. Let h=f—g. By hypothesis #'(x) =0 for all x € [a, b]. By the mean
value theorem, for any c € [a, b), there is a £, a < £ < ¢ such that

h(c) h(a)

—a

K(€) =

But #'(£) =0, so h(c) = h(a). This for all c € [a, b}, so h is constant and thus f
differs from g by a constant, as desired.

Now, given any real-valued function f defined on interval I, we consider
those differentiable functions F defined on I such that F' =f. By Theorem
2.9, any two such functions differ by a constant; thus by specifying the value
of such an f at any point it is completely determined. We denote by [ f=
F(x) that function (if it exists) such that F(a) =0 and F(x) =f(x) for
all xe[a,b]. | fis called the indefinite integral of /. Every continuous
function has an indefinite integral, which is given by the process of Riemann
integration which we now describe.

Let f be a bounded function defined on the interval I. A partition P of I
consists of an increasing sequence of points @, < a; <'** <4, such that
I =[ay;a,]. We now construct two sums, corresponding to the approxi-
mations to the area under the graph of f given in Figure 2.8:

(P, f)= .;Mi(ai - a;-1)

o(P, f) = .‘;m,.(a,- - ;)
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M,—-
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Qo a a a4y ay 45 QGs az

Figure 2.8

where M, m¢ are the maximum and minimum values of f on the interval
[ai -1 ai]'

Definition 10. Let /' be a bounded real-valued function defined on the
interval. f is Riemann integrable if

inf £(P, f) = sup (P, f) (2.17)
P P

(i.e., if we can find partitions for which the two sums X and o are as close as
weplease). Inthiscasethe common valueis called the definite integral of f over
the interval I, and denoted {; 1.

If f, g are integrable on the interval I, then sois f + gand ¢f, c e R. Further

1 (f+9)=0f+119 [rcf=cif. If fis integrable on the interval I,
then f'is integrable on every interval J = I. If fis integrable on the intervals
[a, b] and [b, c] with @ < b < ¢, then f'is integrable on [a, c] and

[ r=[ r+[ 7
La, c] [a, b1 (b, c1

Furthermore, if f>g and both functions are integrable, then {,f> |;g.
Finally, if f'is integrable on [a, b], then

Fx)=) f

[a, x]

is a continuous function of x.
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The fundamental theorem of calculus says more: if f is continuous on
[a, b], then | (, 4y f = [5 f; that is, the definite and the indefinite integrals of
f coincide. The proof of this is actually quite easy to describe. Define
these functions on the interval [a, 5], corresponding to the two sides of
Equation (2.17);

F(x) = inf{Z(P, f): P a partition of [a, x]}.
F(x) = sup{a(P, f): P a partition of [a, x]}
To prove that fis Riemann integrable on [a, 5] is to prove F(b) = F(b). We
show, using Theorem 2.9, that in fact F(x) = F(x) for all x € [a, b].
First of all F is differentiable in [a, b]. Let x € [a, b] and 4 > 0, then
F(x + h) < F(x) + Mh (2.18)

F(x + h) > F(x) + mh 2.19

where M, m are the maximum and minimum of f in the interval [x, x + A].
These inequalities can be routinely verified (see Problem 32); Figure 2.9 is
convincing: F(x + h) is just F(x) plus the infimum of all X (P, f) over parti-
tions of [x,x + h]. Any such sum lies between MA and mh. Now
Equations (2.18) and (2.19) give

msF(x+h)—F(x)S

M
h
? M
m
a x x+h

Figure 2.9
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Letting h — 0, since f is continuous, M and m both tend to f(x). Thus
F'(x) exists and is f(x). Similarly, one verifies that F'(x) also exists for all x
and has the same value. Thus, F and F differ by a constant. Since
F(a) = F(@) =0 is obvious, we have that F(x) = F(x) for all x. Thus
§ (a, x2S is defined for all x, is differentiable and has derivative f. This, then,
is the proof of

Theorem 2.10. (Fundamental Theorem of Calculus) Suppose f is contin-
uous on the interval [a,b]. Then the integral [} f exists for all x € [a, b].
This is a differentiable function of f, and

= =r

e PROBLEMS

29. Prove Proposition 15(ii).

30. In the text the mean value theorem is proven in the case where
f(b) =f(a). The way to do the general case is to compare the graph of f
with the line through f(b) and f(a). More precisely, let g be the function
whose graph is that line, and consider A =f—g.

(a) Show that

f)—f(a) (b) f (a)

h(x) = f(x) — f(a) — (x—a) (2.20)

(b) Show that k(a) = h(b) =0.
(c) Now from the text there is a ¢ between @ and b such that #'(£) =0.
Differentiating (2.20), deduce that

/i (b) —f(a)

—a

f®=

31. Suppose that f is differentiable on the interval [a, b], and f'(x) >0
for all x. Show that fis strictly increasing, that is, f(x) <f(y) if x <y.

32. Verify inequalities (2.18) and (2.19).

33. Give an example of a continuous function of a real variable which is
not differentiable. Give an example of an integrable function which is not
continuous.

34. Find the real-valued function f, continuous on the interval [0, 1]
such that

J.xf(t)dt=ff(t)dt for all x € [0, 1]
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35. Suppose f is k times differentiable on R, and f*®(x) =0 for all x.
Verify that fis a polynomial of degree at most £ — 1.

2.7 Multiple Integration

The calculus of many variables results from the attempt to study functions
of several variable quantities by generalizing to that context the calculus of a
single variable. Some notions generalize easily, others require some ideas
of linear algebra to be properly understood. The integration theory is much
closer to that of one variable than is differentiation, hence we shall describe
it first.

A closed rectangle in R" is a set of the form

(O ..., x) eRd < x < b} = [(@,...,d" B ..., "]

for some fixed points a=(a',...,d"), b= (b%,...,b" in R As in the
case of intervals, we denote the corresponding open and half-open rectangles
in the same way:

(a,b) = {xeR": d' <x' < b'}
[a,b) = {xeR":d <x'<b'}
(a,b] = {xeR": d' < x' < b’}

The term rectangle will refer to any of these possibilities. The volume of
the rectangle R determined by the vectors a and b is

Vol(R) = (b — a)-++ (5" — a")

Notice that the volume of R is the same whether R is closed, open or half-
open. Of course, this is as it should be since the faces contribute no volume.

Now let S be any set. The characteristic function of S, denoted by xs
is the function which is one on S and identically zero off S. We should want
to define integral so that the volume of S coincides with the integral of xs.
In particular, for a rectangle R we shall have | xz = Vol(R). The notion
of integral will be built up piece by piece so that things turn out that way.
Now suppose that fis a finite linear combination of characteristic functions
of rectangles: f=Y7-, a; x(R). Such a function is called simple function:
It is constant on each of some finite collection of rectangles, and identically
zero off their union.
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Definition 11. Let f be a simple function. If f=Y¥_, a; ) g;, we define
k

[£=Ya vol(r) (2.21)
i=1

We immediately have a problem. It may be possible to also write the
same function in another way, f=37_, c; Xs, for some other collection
of rectangles. For Definition 11 to make sense, we must be assured that the
sum Y %_, ¢; Vol(S)) coincides with (2.21). In case the a; and c; are all one
and the {R;} and {S;} are nonoverlapping (intersect only in faces), this
amounts to the assertion that the volume of a set is the sum of the volumes
of its rectangular pieces, no matter how it is so partitioned. The verification
that (2.21) is the same for all expressions of the function f as a combination
of characteristic functions is a long verification which is omitted. We now
make this general definition of the integral.

Definition 12. Let f'be a bounded real-valued function which is identically
zero outside some rectangle R. The upper integral of f is

ff= inf{f o: ¢ a simple function on R such that ¢ > f}

The lower integral of f is

ff= sup{f o: ¢ a simple function on R such that ¢ < f}
fis integrable if
f f= f /5 the common value is the integral J. f

This is the direct generalization of the definition of the Riemann integral
given in Section 2.6. On the plane and in space it bears the same relation
to area and volume as does the Riemann integral to length.

Definition 13. Let S be a set in R". If yg is integrable, we define the
volume of S to be

Vol (8) = [ 1s

Now there are sets for which yg is not integrable; these are highly patho-
logical and shall not occur in this text. Notice that if Ry, ..., R, are non-
overlapping rectangles contained in the set S, then the sum of the volumes
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Y. Vol (Ry) = [ (3 xzr,) is less than | x5, since x5 > Y yz,. Thus the volume
of S is greater than the sum of the volumes of any collection of nonover-
lapping rectangles contained in S. Similarly, if now Ry, ..., R, are non-
overlapping rectangles containing S, j xs <Y Vol(R)). Thus, the volume of
S is trapped between the volume of any union of rectangles containing S and
the volume of any union of rectangles contained in S. If we can make these
two volumes as close as we please by proper choices of the rectangles, then

| x5 is integrable (for then :[ As = IXS), and its integral is the volume of S.

Theorem 2.11. Let R be a closed rectangle in R". If f is continuous on R
and zero off R, then f is integrable.

Proof. Given ¢ > 0, we must find simple functions o, 7 such that ¢ > f > and
Jo <[ 7+ £ Vol(R); for then it will follow that

ffoan-r-}—sVol(R)Sff—}—eVol(R)

for any ¢>0. Thus, T f<If In any case, since the inequality, [f< f fis

obvious, fis integrable.

-Such functions o, T are easily found using the basic property of uniform con-
tinuity (discussed in miscellaneous Problem 80). According to that theorem, given
e>0, there is a 8 >0 such that, if |x —y| <8 then |f(x)—f(y)| <e. Now
partition R into a finite set .S of rectangles each of which has the property that any
two points are within 8 of each other. Thus, if for each such rectangle p, m,, and
M, are respectively the maximum and minimum of fon p, we must have M, — m, <.
Let

o= ZMDXF T:zmoXno
peS pPES

where p, is the open rectangle corresponding to p. Then o > f = 7 certainly, and

Jo =3 M, Vol(p) < 3, (mp+ &) Vol(p)

<f7-+ e > Vol(p) <f1-+ & Vol(R)

since S is a partition of R into rectangles.

These following basic properties of the integral are easily derived.
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Proposition 16. The collection of integrable functions is a vector space and
the integral is a linear function. That is:

(i) Iff is integrable and c € R, then cf is integrable and fef=c _f f

(ii) Iff, g are integrable, so isf+gand [ (f+g)=[f+{9g.

(iii) Furthermore, if f< gthen[f<|g.

Proof. We leave the proof of (i) to the reader. (ii) is certainly true for simple

functions. For if f=23 aixz,, 9 =2, bsxs,;, where R, S, are rectangles, then
f+9=> aixs,+ 2 bixs, is also simple, and thus integrable. By Definition I,

[+ 9= avoir) +3 b, Volis) = [£+ [a

More generally, now let f, g be any integrable functions. If £>0, there are
simple functions oy, 02, 71, 72, such that

o =>f>o0; TI=g=T2

and

f01£f0'2+8 jT1Ssz+€
Thus

ort+mi=ftg=o+ 72
SO

[o+o<fot[n<[@+mtr<[era+2

Since & >0 was arbitrary, we obtain _‘7( f+9) <[ (f+9), so f+g is integrable.
Finally, -

f—(f+y)sfaz+fn+2sgff+ fg+2.s

so letting £ -0,

[r+ar<[r+]q
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Similarly,
_f(f+g)+2€2fm+f-rzzjf+ fg
so again letting £ -0,

[tr+or=[r+]o

(iii) Finallyiff<g,theng —f>>0. Butcertainly the function which is identically
zero is a simple function. Thus [(g —f) > I (9 — f)=0. By (ii) it follows that

lg—§f=0,0rfg={f

We shall now give the basic tool for computing integrals: Fubini’s theorem.
According to that result we can integrate by integrating one variable at a
time. For the purpose of showing this, write the variable (x!, ..., x") of
R" as (x, y) where xe R""! and yeR: x=(x',...,x"™Y), y=x". Letf
be a function defined on a rectangle R in R", and suppose for each y fixed,
f(x,y) is an integrable function of x. Define F(y) = [f(x,y)dx. If F
is an integrable function of y, its integral

JFo ay = [| [ex. 5y x| dy

is called the iterated integral of f. We shall now show that if fis integrable
this is the same as [ /. More generally (after applying this principle # times)
if all functions appearing in the following formula are integrable, then the
formula is valid.

[7Gct, ooyt - dwe
=J’U Uf(xl,...,xn)dxl] dxz-..dxn] 2.22)

This follows from Fubini’s theorem.

Theorem 2.12. Let f be an integrable function on a rectangle R in R". We
refer to the coordinates of R" as (X, y), where xe R, y € Rk

(i) These functions of y, 1 f(x,y) dx, __[_ f(x,y) dx are integrable.
(ii) These functions of x,_j f(x,y) dy, [ f(x, ) dy are integrable.
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(iii) _[ [fis given by any iterated integral of f; for example,

[y axdy=[|[ 15 vax| dy = [[ [rx v ax

Proof. 1t is easily verifted that the collection of functions for which the asser-
tions (i), (ii), and (iii) are true is a vector space. Furthermore, these assertions are
obvious for the characteristic function of a rectangle. Thus, Fubini’s theorem
holds for simple functions.

Now, suppose f'is a bounded, real-valued function on the given rectangle R, and
suppose that o is a simple function, and f> 0. By definition of the lower integral
with respect to the x coordinate,

[fexpax= [otx,y) ax

Now this inequality is maintained after taking the lower integrals with respect to y,
thus

I [ I f(x,y) dx] dy > f [f ax,y) dx] dy = fa(x, y) dx dy (2.23)

since Theorem 2.12 is true for simple functions. Equation (2.23) being true for
any o < f, we can take the least upper bound on the right, obtaining

I U f.9) dX] dy> [fox ) dxdy

Now, by considering simple functions o such that ¢ > f and applying the same
kind of reasoning we obtain this inequality

[[Jreoemax| ar< reeaxay

As a result, we obtain this string of inequalities, which is valid for any bounded,
real-valued function on R:

[r=] [ff] Ff} zf[ff]sz 224)

(The second and third inequalities follow immediately from the fact that the upper
integral always dominates the lower integral.) Now, if fis indeed integrable, the
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first and last terms of (2.24) are the same, so all are the same. That the second and

top third are equal implies that-j f(x,y) dx is integrable. That the bottom third
and fourth are equal says that I f(x,y) dx is integrable. The equation

[rocyaxdy=| Uf(x, v dx] dy

now just states the equality of the end terms with the interior terms.

Now we shall illustrate the use of Fubini’s theorem. Before doing that,
we should remark that we rarely have the occasion to integrate functions
defined on a rectangle; more often such a function is defined or considered
only on a given measurable domain D. We make the following definition.

Definition 14. ILet D be a domain contained in a rectangle R. Given a
function f defined on D, we say f is integrable if this is so for the function f
defined on R by

= f(x) xeD
f(x){ XeR,x¢D

We define {, /= [ /.
If D is a subdomain of a rectangle R bounded by a surface which is the

graph of a function, or has some other redeeming property, then the function
f will be integrable if fis. We shall not pursue this theoretical inquiry,
but rather tacitly assume our domains are redeemable.

Example
39. (D=(x,y): 0<y<x? 0<x<l1}, f(y)=x*+)"

Define f(x, y) = x>+ y* if (x,)e D, and f(x, y) =0 otherwise.
Then

[r=1 =1 [[ dwnar|a=[[[ o) a

since, for fixed x, f(x, y) is zero if x <0 or y > x? and otherwise is
x2 + y2.  We thus obtain

37 |x2 1 x6 1 1 26
—_ 4 —— = - _——
ff f[xy+3]odx—fo("+3)dx 5217105
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y=f(x)

y =g(x)

Figure 2.10

Let us do the same example, iterating this time in the other order.

=L Lo ar=[]f o2+ as] v

The general technique can be described as follows: Try to write the domain
in either of these forms (Figure 2.10).

D={(x,y):a<x<bg(x)<y<f(x)}
or (Figure 2.11)
D={(x,y):a<y<b, ¢(y) <x <y}

Then, given the function f defined on D, we can write

1= s nay) ax

f(x)

in the first case; and in the second

fr=L[ s as] ay

$(x)
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Of course, if neither case can be obtained, then D might have to be broken
up into pieces in each of which either representation is possible. The
computation of integrals in more than two dimensions is done in pretty much
the same way, but with a certain amount of additional care. For example,
one should try to pick out one of the coordinates, say z, so that the given
domain takes the form g(y) < x < f(y), where y represents all the other

coordinates and ranges through some domain D,. Now one proceeds to
break down D, in the same way.

Examples

4. D={(xy2): xX*+y*+2z°<1, x20, y>0, z>0)},
f(x, y, 2) = xyz.
Now z ranges between 0 and (1 — (x? + y*))¥/2, so

D={(x,2:x*+y*<1,0<x,0<y,0<z<[1—-(x*+y)]'%}
Thus, continuing the analysis of
Dy={(x,y):x*+y*<1, 0<x,0<y}

D={(x,12:0<x<1,0<y<(-x)"?
0<z<[l-(*+y)]"%

Figure 2.11
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and

[1-(x2 4271/

=LA e o

1 ol [ -z
=§foxU y(l—(x2+y2))dy] dx

0

_1f1[x(1—x2)2 x(l—xZ)Z]d 1
—2J 2 4 Y=

dx

4. D={(x,y,2): x*+y*+22 <1, (x—H?+y* <},
x>0 y=0 z20} flxy2)=1

(see Figure 2.12). We may rewrite this domain as

D={(x,y,2):(x—H*+y* <4, x20,y>0,
0<z<[l-(%+yH]V3
= {(x:ysz)305XS1,0SyS [}i'_(x-%)z]llza

0<z<[1-(x2+ )]

Thus

[3(x—$)211/2[ [1—(x2+32)]1/2
f [ dz

Vol(D) = f 1 [

dx] dy
0

0 0

Figure 2.12
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Integration is clearly of value in computing volumes; it also plays a role
in the study of mass. Suppose E is a domain in R? filled with a certain fluid.
If D is any subdomain in E, we shall let (D) be the mass of the fluid contained
in D. What information do we need in order to compute mass (D), and how
do we compute it? The answer is suggested by comparison of the properties
of mass with those of volume. In fact, it is clear that the intuitive properties
of mass are the same as the properties of volume; so we should also expect
to be able to compute masses by integration. In fact, we introduce the
notion of density: for x, € E, the density a(x,) of the fluid at x, is the limit

m mass(R)
R-xo VOI(R)

where we mean by R — x,, that x, is in the rectangle R, and the lengths of
the sides of R tend to zero (we might call mass (R)/Vol (R) the relative
density of the fluid in the rectangle R). Now, the mass of the fluid in any
domain is computable in terms of this density function . Suppose D is
such a domain and {R;} is a collection of pairwise disjoint rectangles in D
and almost filling D. Then

mass(R;)

Y mass(R;) =Y, Vol(R) Vol(R))

is an approximation to mass (D) and as the size of the rectangles gets smaller
and smaller, the approximation gets better. On the other hand, this sum is
the integral of a simple function approximating ¢, and thus approximates
fpo. Taking the limit we obtain mass (D) = [, 0.

e EXERCISES

15. Compute the volume of these domains:
(@ {(x,»eR:x*+y*<1}.
) {x,»eR:x*<y<I1}
© {(5y,2)eR:0<x<1,0<y<1,0<z<x*+ y
d {6y, 2)eR: —1<x<1,0<y<2,y<z<y+x*.
16. Verify that the volume of a right circular cylinder of radius r and
height 4 is 3mr2h.
17. Integrate the function f on the unit rectangle [(0, 0), (1, 1)] in R
@@ f(x,y)=xcos2my.
® S, p)=I(x—)y—Hl
©) f(x,y)=xe”+ ye ™.
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x ifx<y
y ify<x
x+y ifx4+y<l1
© SuN={1 7 ifxty=1.
() fOe, )=+ x*+y)"2
18. Integrate the function f on the domain D in R>.
(@ D={xy:0<x,0<y,x+y<1}f(x,y)=x>+y"
(b) D={(x,y):0<y<x<1}, f(x,y) =xy*
© D={(x,»:0<y<x<1}, fx,y) =x%.
(@ D={(x,y): x>+ y* <1}, f(x, y) = —y*»)>.
19. Integrate the function f on the domain D in R®.
(a) D is the intersection of the unit ball with the octant {x >0, y >0,
z>0}and f(x,y,2)=x+y+ 2
(b) D is as above and f(x, y, z) = xyz.
(c) D is the unit cube in the first octant and f(x, y, z) = x* + y* 4 z*.
(d) D is the domain in the first octant bounded by the coordinate
axes and the plane x +y+z=1and f(x, y,z) = z.

@ fix,»)=

o PROBLEMS

36. Verify that the integral on R" as defined in this section coincides,
when n = 1, with the Riemann integral defined in the previous section.

37. Let fbe a bounded, nonnegative, real-valued function defined on the
interval I, and let D={(x,y) e R*; xel,0<y<f(x)}. Verify this
assertion: f is integrable if and only if D is measurable, and [; f= Vol(D).

38. Use Problem 37 to verify this. Let D be a domain in R? and suppose
that D is of the form

{x,»eR*: a<x<bh, glx) <y <f(x)}

Then, if D is measurable, Vol (D) = % [ f(x) — g(x)] dx.

39. Complete the proof of Fubini’s theorem by verifying the second and
third inequalities of Equation (2.24).

40. State and prove Fubini’s theorem in three dimensions.

41. Suppose the unit ball is filled with a fluid whose density is proportional
to the distance to the boundary. Find the radius of the ball centered at
the origin which has precisely half the mass.

42. Suppose a cone of base radius r and height 4 is filled with mud
(Figure 2.13). Suppose the density of the mud is equal to the distance from
the base. What is the mass of the mud?

43. A beach B is shaped in the form of a crescent (see Figure 2.14)

B={(x,y):1<x4+y*;(x— 3> +y> <1}

and the human density o increases with the distance from the water. More
precisely, o(x, y) =(x*+4 y*)~!. What is the mass of humanity on that
beach?
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Figure 2.13

Figure 2.14

2.8 Partial Differentiation

Although the integral in R" is defined without reference to the coordinates,
it is computed by a succession of integrations, one coordinate at a time. The
notion of differentiation is, to begin with, generalized to R" one coordinate
at a time. Later we shall see how to build out of this generalization an
invariant notion of derivation. .

Let x4 € R", and suppose that f is a real-valued function defined in a
neighborhood of x,. For each i consider the function of the single variable

x' given by

SOty oo X oo, XM
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If this function is differentiable, we denote the derivative by df/ox’, and call
it the partial derivative of fin the x' direction. More precisely,

Definition 15. Let f be a real-valued function defined .in a neighborhood
of X, in R". The partial derivative of / with respect to x' at X, is the limit

a_fi xo) _____limf(x01, cees xoi +t..., xon) _ f(xol, o, xo,,)
0x 10 "

Another way of describing the partial derivative is this. Consider the
function f only as a function on the line through x, and in the E; direction.
This restriction is a function of one variable and df/dx’ is its derivative.
These partial derivatives are computed merely by considering all but the
relevant variable as constant.

Examples
42.
f (x, y) =Xy

o o,
a(x,)’)—y E;(xay)_x

43,
a 2 - a 2 2
ax(x y) = 2xy 5()6 y)=x

|
44,

f(x, y) = cos[x(1 + y)]

i
a_{c(x’ y)=—(1+ y)sin[x(1 + y)]

a
%(x’ y) = —X sin[x(l + y)]

45.

flx, y) =x’
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)
-t ~£(x,y)=xylnx

dax B dy

Of course, if the functions

o o
axt’ T oxn

are also defined in a neighborhood of x,, we may subject them to further
partial differentiation, and keep going in this way as far as possible. We shall
refer to any such operation as a partial differentiation and call its order the
number of individual partial derivatives involved.

Thus, the order of

5 (50)

is 2; the order of

se (5 320

is 6. We introduce a notational convention which deletes parentheses.

oy _2 (o)

ax*  ax \ox
5= (5)

xdy ox \dy
-

axtox’ — ox' \ox/

a5~ aw (3w (0)
ax ox ax*  ax' \ox’ \ox*

o°f 6( °*f 3)

ax? dy 02> ox

and so forth.
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Suppose now that f'is a function defined in an open set N in R" and that
offox', ..., of]ox" all exist in N. If we set all the variables constant except
one, say x', then df/dx’ is just the derivative of f along this line. Thus, if
df/dx' = 0, f is constant along the line on which only x’ varies. In such
circumstances we say that fis independent of x', since f does not vary as x'
alone varies. If, moreover, 8f/dx' is zero at all points of N for all i, then f
depends on none of the variables, so is constant. As this is an important
observation, we make it.

Proposition 17. Suppose that [ is a real-valued function defined in a neigh-
borhood of x, in R". [ is constant near X, if and only if all the derivatives
afjoxt, ..., 8f/ox" exist and are zero near x, .

Proof. If fis constant, it is obvious that 8f/ox' =0 for all i. On the other hand,
suppose that these conditions are valid in a ball B(x,, r) centered at x,. Let

y=0...,y)eB(xs,r). Wewill show that f(y) = f(x,). Figure 2.15 illustrates
the proof. Consider the function of x":

Slxol, ..., X871, x%)

This function has derivative zero by hypothesis, so is constant. Thus,
flxos oo, X878 X6 =f(xo', ..., XB7H, Y7

Now, the function of x"~*,

f(xols LERE] x6—2, x"_ls y")

[ (¥, y%9%)

(xa', xv®, x0*) (¥, x02, x0%)

i (yl’yﬂ, XOS)
Figure 2.15



2.8 Partial Differentiation 189
also has derivative zero, and thus must be constant, so
FOxo, oo, 7L Y =f(xd, .., " )
This together with the preceding equation gives
flxo!, ..oy X871, Xxo") =flxo', ..., XE72, 3", ")

Continuing in this way, we can replace each x,’ by the corresponding )’ one at a
time, ending up with the desired equation f(x,) = f(»).

As far as the higher order differentiations are concerned, there is one basic
fact we should now verify. This is that each partial differentiation depends
only on the number of derivatives with respect to each coordinate, and not
on the order in which they are performed. For example,

2 2

ofr _ 97 (2.25)
ox 0y 0y ox

an an an

axzayazz=626x6yaxaz=ayaxazazax=m

We shall verify only the first equation; it being clear that all others follow
from a succession of applications of the first one. The verification of (2.25)
amounts to an interesting application of Fubini’s theorem.

Theorem 2.13. Let f be a real-valued function defined in a neighborhood
N of (xq, ¥o) in R? and suppose that all first- and second-order partial deriva-
tives of f exist and are continuous on N. Then

>f o
dx dy  dy ox
throughout N.

Proof. We apply Fubini’s theorem to 8%f/8x 8y in a sufficiently small rectangle
R ={((xq, yo), (s, 1)) contained in N (see Figure 2.16)

S t 82f t s azf
_ 2.26
'[ [ vo 0% Oy dy] d f [ xo OX Oy dx] @ ( )

x0 Yo
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(s.1)

(X0, y0)

Figure 2.16

Now, we can easily evaluate the integral on the right-hand side. For fixed y,

e e [(of of of
woxdy T f,o ox (3_y x, J’)) dx = p (s, )~ % (xo,¥) 227

Integrating once again (this time with respect to y) we obtain from Equations (2.26)
and (2.27)

5 3 a;f
d
f [ vo 0% Oy Y

*0

o
dx = f 5 U6 = fxo, )]y

=f(s, 1) = f(xo, ) = Lf(s, yo) — f(x0, yo)] (2.28)

Now, we can differentiate this equation with respect to s first, and then . By the
fundamental theorem of calculus, we know how to differentiate the integral on the
left with respect to the upper limit of integration:

a1

Then, from (2.28)

o2f b
o% &y (x, ) dy] dx; = fm ox oy (s, dy

'ty of of
fyo 2% oy G, »dy= x (s,1)— ox (s, yo)
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Differentiating this equation now with respect to ¢, we obtain

o
ox dy

o*f
(5 0=5 5260
as desired.

Another important application of Fubini’s theorem is this result, which
allows us to differentiate under the integral sign.

Proposition 18. Suppose that f is a continuously differentiable function of
two variables x and y, a<x < b, and ye D, a domain in R". Define the
function F on the interval [a, b] by

Fx) = [ f(x,y) dy
D
Then F is differentiable and

dF of _
=] = ya

Proof. We shall show that F is the indefinite integral of the function

2
J. a—xjj(x, y) dy

D

and thus by the fundamental theorem of calculus, the proposition follows. By
Fubini’s theorem

([ Zeono ([ Zene

But by the fundamental theorem of calculus, the inner integral on the right is
ftt,y)—f(a,y). Thus

dy

f [ g(x’Y)dY] dx = f [f(t,y) — f(a, )] dy = F(1)— F(a)

Let us return now to the consideration of the first-order derivatives. These
are obtained by differentiating after restricting the function to lines parallel
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to the coordinate axes. We generalize this notion to allow differentiation
along any line. That is, we make this definition.

Definition 16. Let x, € R" and suppose f is a real-valued function defined

in a neighborhood of x,. If v is a vector in R", we define the directional
derivative df(x,, v) to be

d
Ef(xo + tv) .

0

This is clearly the same as

limf(xo + tV) - f(xo)

t-0 t

We leave it as an exercise to verify that

T (50 = df(x0, B (229)
X

Now, in certain pathological cases the directional derivatives need not hang
together in any nice way, but typically we need only know the partial deri-
vatives in order to find any directional derivative.

Proposition 19. Suppose f is defined in a neighborhood of X, and the partial
derivatives 0f/0x!, ..., Of/ox" all exist near x,. Then the directional derivatives
df (xq, V) vary linearly in v.

Proof. The argument consists in looking at the difference
S(Xo + tv) — f(X0)
one variable at a time. In order to expose the idea without encumbering the

argument with a pile of indices, we consider the two-variable case. Write the
difference

S(xo + th, yo + th) — f(xo, yo)

as

{f(xo + th, yo + tk) — f(xo + th, yo)} + { f(xo + th, yo) — f(x0, ¥)}
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We can find a better expression for the term in the second set of braces by applying

the mean value theorem to the function f(s, yo) of s. That is, there is a & between
xo and x, + th such that

0
S(xo + th, yo) — f(xo0, yo) = 5£ (o, yo)th

Similarly, by applying the mean value theorem to the function f(x, + th, s), we can
rewrite the term in the first set of braces as

of
5} (xo + th, o)tk

for some 7o between yo, and yo + tk. Thus, we have for suitable (o, mo) in the
rectangle [(xo, yo), (xo + th, yo + tk)],

fo+ V) —f(x0) o of
B o oyl o Gt th, ok

Letting ¢t —0, we obtain by continuity that

7 0
d((x0, yo), (h, k)) = 'a£ (xo0, yo)h + %} (xo, yo)k (2.30

Thus the proposition is verified, at least in R>.

This linear function, df(x,, v) of the vector v in R" is called the differential
of fat x,. We will make a systematic study of this in a later chapter. The
vector-valued function

(57 3)

axt T ox”

is called the gradient of f and is denoted by Vf. It is clear from Proposition
19 that the generalization of (2.30) to n variables is

A0, ) = 2 (ko) = <. T xo) 231

The gradient behaves as a sort of total derivative.”” It is not as powerful
in the analysis of a function as the derivative in one variable and it is some-
what more cumbersome, but it does provide a similar kind of tool. For
example,



194 2. Notions of Calculus

Proposition 20. The gradient of a function vanishes at any point at which it
attains a maximum or minimum value.

Proof. If xo=(xo},...,x¢") is (for instance) a maximum value of f, then
Sflxo', ..., x' ..., xo"), as a function of x‘, attains a maximum at x,'. Thus,
of [ox' vanishes at xo'. Since this is true for all i, Vf(x,) =0.

Examples
46. Consider f(x, y, z) = x* + xy + y2.
Vf=(@2x+ y, x + 2y)

Thus Vfis zero when

that is, only at the origin. This is the only critical point, and a
minimum at that,

47. f(x,y,z)=xcosy+z
Vf=(cosy, —xsiny,1)
is never zero, so f has no critical values.
48. f(x,y,2) = x cos(yz)
Vf = (cos(yz), —xz sin yz, —xy sin yz)
Vf is zero only when x = Oand yz = n(n + 1) foranyintegern. Clearly,
S has both negative and positive values near any point on the line

{x =0}, so no such point is critical. Thus, f has no critical points.

o EXERCISES

20. Find the first partial derivatives of these functions.
@ xyz (b) sin(xy) () »° (d) x*+yx
21. Differentiate x**. (Hint: This is the same as finding the directional
derivative of x** at a point (x, x, x) in the direction of (1, 1, 1).)
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22. If fis differentiable at x,, then

of
P (x0) =df(x0, E))

for all 7.
23. Suppose that f, g are differentiable at x, in R". Show that Jg is also

differentiable and V(fg)}(Xo) = f(X0)Vg(Xo) + g(Xo)Vf(Xo).
24. If fis differentiable at x,, and f(xo) % 0, then

v (‘lf) (Xo0) = ;_21 Vf(x0)

25. What is the minimum of x2 + y® + 2y + 1)2?
26. What is the maximum of

x4+ 3y ”
1+x2+y2‘

27. Compute the differentials of the functions in Exercise 20.

¢ PROBLEMS

44. Suppose fis a differentiable function of two variables and g,, g. are
differentiable functions of one variable so that the range of (gi, ¢2) is in the
domain of £ Find the derivative of A(t) = f(g.(t), g:(¢)).

45. Let f be a differentiable function of two variables. Show that fis a
function of x — y alone if and only if 8f/ox + af /oy =0.

46. Suppose that L: R"— R is a linear function. What is VL?

47. Let T: R"— R" be a linear transformation. Define the function on
R*X R f(x,y) =<Tx,y>. Show that f is differentiable, and Vf(x,y) =
{T'y, Tx> (recall that T* is the transpose of T: if T is represented by the
matrix (a,!), then T is represented by (b,) where b)' = a/).

48. If T: R"— R" is a linear transformation, then the function g(x) =
{Tx, x) is differentiable, and Vg(x) = T'x 4 Tx.

2.9 TImproper Integrals

We return now to the study of functions of one variable; in fact, we will
be considering functions defined on the whole real line. Our interest will
focus on the “ behavior at infinity > of such functions. For this purpose we
introduce the notion of lim f(x) as x — co.
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Definition 17. If fis a real-valued function defined in an infinite interval
{x: x> a} we say that f(x) converges to L as x becomes infinite, written
lim f(x) = L if, for every ¢ > 0 there is an M > 0 such that x > M implies

X+
|f(x) — L] <& Similarly, if fis defined in {x: x<b} we say lim f(x) =L

(the limit of f(x) is L as x becomes negatively infinite) if, for every ¢ >0
there is an M > 0 such that x < — M implies [ f(x) — L| <e.

Examples

49. lim1/x =0. For given ¢ >0, we can take M =¢~'. Then

x > M implies {1/x — 0] <.
50.

1,m4x2+3x+5_1
,,l_.w 8x2—-7 2

For, so long as x > 0,

4x*+3x+5 44 3/x+5/x*
8x2—7 8 —17/x?

(2.32)

Now, we can compute the desired limit by using the standard algebraic
rules (the limit of a sum is the sum of the limits, etc.). (See Exercise
28.) Since 1/x, 1/x* tend to zero as x — oo, the limit of (2.32) as
x— o0 is 4/8 = 1/2.

51.

. xlx| . x |x|
xl—vn:)]-'f'xz leflw1+x2
If

x| x| x? 1
>O, = =
x L+ x2 1+x2 1+1)x?
if
2
-1
£ <0 x| x| _ x

"T+x2  1+x2 1+1/x
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52. lim arctan x = 7/2.

x—+ 0

Definition 17 is the analog for functions defined on an infinite interval
of the notion of convergence of a sequence (a function defined on the integers).
Just as we pass from sequences to series we can pass from infinite limits of
functions to infinite sums; that is, integrals over infinite intervals.

Definition 18. Let f be a continuous function on the interval {x: x > a}.
We say f is integrable if lim {7 f exists, in which case we write the limit as

X o0

[2 f. fis absolutely integrable if lim [7 | f| exists.

XxX— o0

Examples

53. x~?%is integrable on the interval [1, «0). For

m m 1
fx‘zdx=-—x_1 =——+1
1 1 m
SO
® . 1
fx dx=lm|——+1])=1
1 m- o m

54. x~!cos x is not absolutely integrable on the interval [1, c0).
For

r

Between 2nn — m/3 and 2nn+m/3, x”'cosx = (2nn+ 73”1 L
Thus,

r

The theory of integration on infinite intervals is entirely analogous to the
theory of infinite series. We have the following facts (whose counterparts
in the theory of series are easily recognized).

cos x 2zn+7/3 cos x

X

dxzif

n=1"2nn—n/3 X

e 1 2
deZ j:w

€os X 1 )
=~ 2 (Qan+mnf3) 3

X
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Proposition 21. Let f be continuous on the interval {x : x = a}.

(i) fis absolutely integrable if and only if the set {5 | f|} is bounded.
(ii) Iffis absolutely integrable, then f is integrable.
(iii) (Comparison Test). If there exists ab > a and a constant K and an
integrable positive function g defined on {x: x > b} such that Kg > |f|, then f
is absolutely integrable.

Proof.

(i) If | f) is integrable, clearly {j.’,f |f|}is bounded. On the other hand, if {j",: 1f}
is bounded, let L = sup{j’.i |£13. Then for e >0, L — ¢ is not an upper bound, so
there exists an x, such that jﬁ° |fI =L — e Then for all x >xo,,

szﬁﬂzfﬂﬂZL—e
SO
'L—fmfd<e

(i) Suppose _ff’ |fl=L. Lete,= _[: f.  We show that {c,} is a Cauchy sequence.
Let £ >0. Then there is an x, such that for x > x,,

[in-z|<;
. Kl <2
Then for n, m > x,,

m

J, 1

len— le =

swaSJKLﬂ—[?VW

S{HH—L%—

fm ¥l —L‘ <e

Thus {c.} is Cauchy, so converges, say to ¢. We shall show that in fact _\',‘:’ f=c
Let £ >0, and find N so that j¢, — ¢| <¢&/2 for n > N. Then for x > max(x,, N),

ff—c ff—c

as in the previous computation.

<

[ in<iei=
Nl I<5t+5=¢
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(iii) Under the given hypothesis, if x > 1, then
x b w©
1<) IflI+K| g<o
J.t' fn fb

Thus by (i), fis absolutely integrable.

Here is an easily derived relationship between the absolute convergence of
series and integrals which provides yet another test for the convergence of
series.

Proposition 22. (Integral Test) Let f be a positive, decreasing function
defined on R*. Then [ fexists if and only if Y 2, f(n) < 0.

Proof. For x,n<x<n+1 we have f(n) >x>n—+1. Thusf(n)z_[:“ f=
f(rn+1). Thus, by comparison the series > _f:“ fand ¥ f(n) converge or diverge
together. But the convergence of the first series is the same as the existence of
j‘i" f, and conversely.

This proposition gives an easy proof that > 1/n**+» < o for ¢ >0. (Compare
to the work of Example 18.) For if we consider the integral _[? dr/t**¢, we have

*dt -1

. t1+e ert

¥ 1 1 1
= - — — =
1 e &x* &

as x — oo,
Example
55.

° 1
—_—<
2, nogm =%

For
J“‘ dt =flogx-d_u= _u—l logx:‘_l__ 1

2 t(log1)> g2 42 g2 log2 logx
Thus

J‘°° dt —lim( 1 _ 1)= 1 <
2 tlog1)?  s-w\log2 logx/ log2
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o EXERCISES

28.

exist.

29.

30.

Verify these algebraic properties of lim. Suppose hm f(x), 11m 9(x)

(a) lim f(x) + g(x) =lim f(x) + lim g(x).

(b) lim f(x)g(x) =Lim f(x) Lim g(x).

X -+

lim f(x)
@ tim 2=y flm o 0.

X~

Compute these limits as x — oo,
i 1
@) 51_11_: (d) tan-.
X x
x*4+3x+1 o1
(b) i1 (e) xsin <
x2—1
© x2+1°
Which of these series converge:
@ 1 = logn
f
@ =2 nlogn ® ..Zz n3?
2 2 (=1
b -
® 2 (log n)? ® 2 Gogny
® 1 ® 1
e h _
© nZZ n(log log n)? ® n=2 (log n)?
® 1 . ® 1
@ ..Zz (log n)*(log log n)? @ n=2 (n sin n)*
© 1 ) ® 1
© 3 )

t (1r 1) ..Za nlog(log n)' *+*
tan 2
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2,10 The Space of Continuous Functiens

The mathematician attacks his problems with a certain store of techniques.
Occasionally a problem will require the development of a new technique;
more often the problem is solved by viewing it in one way, and then another
and then again another until a viewpoint is obtained which allows for the
application of one of those techniques. Sometimes if the viewpoint is clever
enough, or profound enough—or naive enough—the applicable technique
is quite elementary and surprising and leads to further deep discoveries.
This is the case with the contraction lemma (a fixed point theorem) which we
shall apply several times in this text to obtain some of the basic facts of
calculus. First, in this section, we shall develop the particular viewpoint in
the relevant context. It is simple enough—instead of looking at continuous
functions one at a time, we consider them all.

Let us illustrate this with a particular problem. Suppose we are interested
in finding a differentiable function with these properties:

f'(x)=f(x) forallx and f(0)=1 (2.33)

To find such a function means first of all to verify that a solution to our
problem exists, and secondly to establish some technique for computing it.
We already have enough experience with calculus to know that this second
objective will be hard to fulfill. What we in fact seek is a means of effectively
approximating our solution. This provides a clue: let us look for a sequence
of functions {f,} which converges to a function with the properties (2.33).
Such a sequence would be a sequence of differentiable function {f,} such
that the sequence {f,(x)} converges for all x, and f'(x) = fo_1{x). If we
had such a sequence, we could take the limit and deduce that

lim f",(x) = lim f; _,(x)

50 f(x) = lim f,(x) will solve our problem.

Now this is a good idea, because Equation (2.33) itself provides the tech-
nique for generating such a sequence. Let f, be any function, and define
fi=f. Then let f,=f", fs=f"2, and s0 forth. Will the sequence
{f.} converge? Well, that is a problem. Notice that fo=f"1=f"0,
fa=f,=f"y, and more generally f,=fg". Thus, we must be very
careful to choose an infinitely differentiable function for f,. Suppose fp is
chosen as a polynomial of degree n. Then f,4; =f{"*1 =0, and so all
the rest of our functions are zero. Thus, the sequence certainly converges,



202 2. Notions of Calculus

but hardly to a solution, since the condition f(0) = 1 is not verified. In fact,
this present approach has obviously petered out fruitlessly and it may be
because we have not incorporated the initial condition f(0) =1 in our
approach. Can we put all of (2.33) in one statement, and then proceed
with this technique of generating an approximating sequence? The funda-
mental theorem of calculus says yes; in fact, (2.33) can be rewritten as

169= [ Fydr+1 (2.34)

This now is an operation involving integration rather than differentiation,
and so we have the added advantage of not having to choose a very well-
behaved function for the first approximant. Let us try again, with (2.34)
rather than (2.33). Letting f; =1, we find

fl(x)=f:1dt+1=x+1

. 2
L@ =[+ndi+1=F+x+1

3 2

X X
f3(x) = f( +t+1)dt+1=§_!+a+x+1
i 1= X x*
f..(X)=f0f,,_1(t) =t et S x

(2.35)

Now we’re getting somewhere. We have already seen that the series (2.35)
converges for any x. Thus, letting

S =timfe) = 3 X

this must be the sought after function. (Of course the reader has long since
recognized the solution of our problem as being the exponential function.
Thus he should be reassured to see that it did in fact turn out that way.)
What we need now is the theoretical mathematics that will allow us to take
the limit in (2.35) and correctly deduce

i@=[roa+i=§ =
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Thus we are led to the question of convergence in the space of continuous
functions. We now proceed to that theory.

Let X be a closed bounded set in R”, and let C(X) denote the space of all
continuous complex-valued functions on X. We know that if fand g are two
functions in C(X), then so are f + g and fg and ¢f, for ¢, a complex number.
In particular, C(X) is a vector space on which multiplication is defined.
The vector space C(X) is quite different from the vector spaces C”, R": C(X)
is usually infinite dimensional (see Problem 49). C(X) does not have any
obvious ‘““standard basis’—in fact, we wouldn’t know how to choose one.
In other particulars, however, C(X) is not very different. There is in this
space a reasonable notion of closeness. Two functions are close if their
values are everywhere close; that is, if the maximum of their difference is
small. This leads to a notion of length and distance in C(X).

Definition 19. Let X be a closed and bounded set in R", and C(X) the
space of continuous functions on X. If fe C(X), the length of fis

£ = max{|f(x) |: x € X}
If f, g are in C(X), the distance between fand g is || f — g|.

The properties of length and distance are just those of the corresponding
notions in R":

leflf = let 1A
If+gl <11+ gl

If |f| =0, then f=0. What is important is what we can consider the
notion of convergence of a sequence of continuous functions. We say that
f, > fif |If, = f| =0, that is, if the distance between the general term of the
sequeénce and f becomes arbitrarily small. This is the same as saying that
the values of f, at points of X converge to the values of fin a uniform manner.
The value of these notions lies not only in their naturality, but in the now
realizable possibility of finding specific functions satisfying given properties
by techniques of approximation. Let us make this precise.

Definition 20. Let X be a closed bounded set, and {f,} a sequence in
C(X). We say that {f,} is uniformly convergent if there is an fe C(X) such
that

lim || f,— fll =0

B oo
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We say that the sequence is uniformly Cauchy if, for every ¢ > O there is an N
such that

W =Sl <& whenever n,m > N
Examples

56. Let x be the interval [0, 1], f,(x) = (1 — x)x". This sequence
converges uniformly to zero. Let us compute max|f,(x)| = [ £,1l.

£l =n(l — x)x"" — x*

so f,’(x) = 0 has the solutions x =0, x = n/(n + 1). Thus

i = (1- =) () = ()

which tends to zero.

57. On the same interval the sequence f,(x) = sin x/n tends to zero,
for

.1
||f,,||=sm;—>0 asn— oo

58. Consider the convergence of the sequence {nx sin x/n} on the
interval [0,1]. Now we know that sinx/n—>0 as n— co, but
nx —» o0, so we cannot make any deduction about the product.
We have to refine our information about sin x/n. For large values of
n, it is very close to x/n. Thus

nxsin > ~ nx - = = x? (2.36)
n n

so we guess that nx sin x/n — x2. Let us prove it by computing

nx sin % - x? (2.37)
In order to do that, let us provide an estimate to our guess (2.36).

in the interval [0, 1] (2.38)
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Then (2.37) becomes

. X 2
nxsin——x
n

XX X
nx|sin— — —) + nx - = — x2
n n n

= nx(sinx x)
i (2.39)
XX
< ||lnx| sm———“ (2.40)
n n
1
<n-—=n!
<n " n

and since n™!

— 0 as n — oo, we are through.

59. On the interval [0, 1] the sequence {sin nx} is not convergent.
It is not even a Cauchy sequence. The distance |sin nx — sin mx|)
does not become arbitrarily small as n,m — c0. In particular, if

m = 2n, we have
. n ) n
sm(n Zl-) — sm(2n E)l =1

The basic theorem about convergence of continuous functions is the
following, which plays the same role in C(X) as the least upper bound axiom
does for R. It provides the assertion of existence of functions with prescribed
properties. In order to verify that a sequence of functions has a continuous
limit, we need only verify that it is a uniformly Cauchy sequence.

[sin(nx) — sin(2nx)| =

Theorem 2.14. A uniformly Cauchy sequence of continuous functions is
uniformly convergent.

Proof. Suppose {/,} is a uniformly Cauchy sequence of continuous functions
on X. This means: for every € >0, there is an N >0 such that ||f, — fall <e for
n,m>N. This means precisely

X)) —fu(x)| <& forallxeX 2.41)

Thus, for each x, {f,(x)} is a uniformly Cauchy sequence of real numbers, anfl
thus converges. Denote the limit, lim f;(x) by f(x). We must show that this
function x — f(x) is continuous, and that f, converges uniformly to f.
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First of all, if e > 0, choose N as above, and let m — o in (2.41). We obtain, for
n>N,

lim |fi(X) ~ /(@) = | fi(x) —f(X)| <& forallxe X

m-— o

Thus, if n>N, |fu—fll=¢. This implies that lim{f,— f||=0, as desired.

Now f is continuous. Fix xoe X. Let £¢>0 and choose N so large that
|lfv —fll <€&/3. Since fy is continuous, there is a 8 >0 such that |x — xo|l <3
implies | fi(x) — fu(xo)| < &/3. Then if |x — x0| <86,

| F&X) — f(Xo)| < |F(x) — A(X)| + |/ m(X) — fu(Xo)| + | fn(X) — F(Xo)]
£ & &
<3t3t3=e
as desired.

Having seen one vector space of functions, we can easily see them every-
where. The collection of bounded real-valued functions on a set X is a
vector space over the reals. The collection of all bounded functions on X
taking values in R" is also a vector space; similarly, the space of continuous
functions taking values in R". All the spaces here are endowed with the
same concept of length:

LAl = sup{l /) |l: x & X}

Of even more interest are the spaces of functions on which is defined some
analytic operations. For example, if I is an interval, the space of all real-
valued functions which are differentiable on I is a vector space. The space
C!(I) of all functions whose derivative is continuous is also a vector space,
as is the space C™(I) of all functions which have continuous ath derivatives.
The space R(J) of functions which are integrable on I is a vector space. These
(and other) examples are further elaborated in the exercises. Suffice it to
say here that the mathematical theory which follows this point of view
(called functional analysis) is a recent (20th-century) development which has
had profound impact, not only in foundations of mathematics, but in the
practical application of mathematics in all branches of science.

Let us return to the space C(X) of continuous functions on a closed
bounded set X in R". Once we begin thinking of these functions as points
in a space, on which are defined such notions as distance and convergence,
we are easily led to consider functions on that space. Naturally, such a
function is continuous if it takes convergent sequences into convergent
sequences.
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Examples

60. Let geC(X) and define ¢(f) =fg. ¢ is continuous, for if
Ja—/, thatis, | f, — f|| -0, then

Ifog = fall < f, = f1l gl >0
61. Define ¥: C(X) - C(X), Y(f) =f% is also continuous, for
A2 =20 = WL =D+ DN < Ny =f1 - 1+ 1) (2.42)

If f,—f, the term | f, + f| remains bounded while =71 =0,
thus also || £, —f2%| - 0.

62. If P is any polynomial, yp(f) = P(f) is continuous on c(X)
(Problem 55).

63. Define M: C(X) - R, M(f) = | f].
This is continuous, since

IM(f) =MDl =1 171 = llglI<If~gl

64. Let xo € X and define Fy: C(X) - R, F(f) =f(x,). Certainly
Fy is continuous: for if f, » f in C(X), then the maximum over X
of | f(x) — f(x)] tends to zero; in particular, |£,(x,) — f(x,)| = 0, so
Fo(f) = Fo(f).

65. The definite integral is a continuous function on C(I), where
I=[a,b]cR. For

U,f" B f,f‘ < Ul(fn -/ ’s 1o =116 = a)

soif f, > f,also [, f; = [, f. A stronger and more important statement
than that of Example 65 is that the indefinite integral, as a function
from C(I) to C(1) is continuous. This is contained in the next pro-
position.

Proposition 23. Let I = {xe R:a < x < b}. Suppose f, is a sequence of
continuous functions on I converging uniformly to f. Let F(x)= [ f,,
F(x) = [%f. Then F,— Funiformly.
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Proof.

|F(x) — F(x)| =

[« —f)‘ <lfaflx—a) < lifo— 16— a)

Thus, taking the maximum on the left,
\F—FlI < lIfa—fli6—a)
so if f, —f uniformly so also F, — F.

Problem 56 is intended to demonstrate that on the other hand, differentia-
tion is not a continuous function on C(I). (It isn’t even everywhere defined;
i.e., there are continuous functions that do not have a derivative.) Neverthe-
less, Proposition 23 has this consequence for differentiation.

Proposition 24. Let {f,} be a sequence of continuously differentiable
functions on the interval [a, b] and suppose that (i) {f',} is uniformly Cauchy,
(ii) £,(@) = O for all n. Then {f,} is uniformly convergent to a differentiable
Sunction f and = lim f",.

Proof. The proof of this proposition consists in a rereading of Proposition 23
via the fundamental theorem of calculus. By that theorem

fil) = f i

so by Proposition 23, f; is also convergent. If we let g =lim f’,, then lim f, = _[’: g.
Thus, lim f, is indeed differentiable and its derivative is g =lim f*,.

Let us return now to the consideration of our original problem. In fact,
let us generalize it slightly. Let ¢ be a complex number, and let us seek a
differentiable complex-valued function f such that

f'(x) = cf(x) forallx and f(0)=1 (2.43)

This is, by the fundamental theorem of calculus the same as seeking a con-
tinuous function f such that

fo)=c f:f(z) dt +1 (2.44)
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Now that we have the necessary theory and point of view available, we may
follow a more sophisticated approach. Let I be the interval I = [—R, R],
and define the function T on C(I):

Tf(x) = ¢ f;f(t)dt +1 (2.45)

We seek a function f such that f = Tf, that is, a fixed point of the transfor-
mation. Our technique is that of successive approximation. Let f; be any
continuous function, and define f, = Tf,, f; = Tf, =T?f,, and in general
f,=Tfi—y = T",. We must show that the sequence {f,} converges. If
we choose f, = 1 we can compute the sequence explicitly, and we find that

(CX)" (ex)”!

fi(x) = o _1)!+"'+cx+1
Then if m > n,
e, @)t (e
JulX) = fux) = ( _1)!+ (n+ D!

On the interval [—R, R] the maximum of this expression is dominated by
replacing ¢ by |¢[, and x by R. Thus,

(R (elR™™ . (el R
=Sl == T T G

R* & (|| R)
gt = 5000 § 000 (246)

Since the series

{ i (lel R)"}

converges, its sequence of partial sums is a Cauchy sequence, so by (2.46),
{f.} is a Cauchy sequence and is thus uniformly convergent. Since T is
continuous on C(I), we have

lim £, = lim T(f,_,) = T(lim f,_,) = T(tim £,)
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so lim f, solves the given problem. This function is important enough for us
to spend a few more paragraphs discussing it.

Definition 21. The exponential function, denoted exp(cx), or e*, for any
complex number c is the solution of the differential equation

S =¢x® fO)=1

First of all, this definition makes sense, because there is only one solution.
If g also solves, then

=0

d [eCX cecxg — eCXgl cecxg — cecxg
dxlg] ¢ B g9

since g’ = cg. Thus e”g~! is constant. Since its value at 0 is 1, eg~ ! = 1,
or e =g. From these discussions we have these additional properties of

the exponential function

Proposition 25.
2 (cx)"

M =Y
n=0 n!
(i) e**? = e
(iii) e* is never zero.

Proof. Part (i) follows directly from the argument above. Part (ii) follows
from the uniqueness. Fix y, and define A(x) = e**’/e*>. Then

x+y 0+y

—h(x) and K(O0)=— =1

e e’

Hix) =S

Thus we must have h(x) =e* so (ii) is verified. Part (iii) follows immediately
from (ii):

e~ x = ecx—cx = eO — 1
50 (%)~ =e°,

® PROBLEMS

49. Let I be a nonempty interval in R. Show that C(I) is infinite
dimensional.
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50. Show that the sequence of functions on the closed unit disk in C
defined by

k

£ =z f‘k—

converges.

51. Does the sequence { > z“/k} converge on the closed unit disk ?
h=1

52. Let {a.} be a sequence of complex numbers such that > |ai.l < 0.
Verify these facts:

(a) For every z, |z| <1, f(z) = 2=, a,z" converges, and
f@< leani

(b) fis continuous on {ze C: |z| <1}. This is true because fis the
uniform limit of the polynomials fi(z) = >7-1 a.z", since =<
S n+1la) ~0as N— 0.

53. Let f, g be continuous functions on the closed and bounded set X.
Show that |Ifgll < II£Il - llgll s lIfgll < If1I- ligll possibie?
54. Show that on the interval [0, 1],

X X 1
sin- — -l < — for all n
n n

n

55. Let X1, ..., X € X and p be any polynomial in k variables. Define
¥:.C(X)—=~C

¥(f) =p(f(x1), ..., [(x0))

Show that ¥ is continuous.
56. Find a sequence {f.} of differentiable functions which is uniformly
convergent, but such that {f ’(3)} is not convergent.

2.11 The Fixed Point Theorem

The fixed point theorem is a generalization of the technique of successive
approximations described above in the discussion of the exponential function.
This technique was first used by Newton as a technique for finding roots of
polynomial equations. Simply stated, Newton's method is this. First,
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a technique is described by means of which one can transform a given approxi-
mation to a root into a better approximation. One then chooses a reasonable
approximation, applies this technique to it to find a better one. Having
this, one again applies the technique: if it’s a good one, the result is an even
better approximation. Continuing in this way, one obtains a sequence of
approximations which should converge to the root. Now, having described
the procedure, let us turn to Newton’s specific technique for bettering
approximations.

Let f be a given real polynomial. We want to find a point x, such that
f(xo) =0. Choose a p, so that f(p,) is small. Now, replace the function by
its linear approximation at p,: L(x) =f(p,) +f'(p)(x — py), and let p, be
the root of L(x) = 0. In other words, replace the graph of f by its tangent
line and let p, be the x intercept of that line (see Figure 2.17). Now apply
this procedure to p,. Let p; be the root of the linear approximation to f
at p,, and so forth. We can describe Newton’s technique abstractly as
follows: For any point p, let T(p) be the zero of the linear approximation of
f at p: T(p) solves the equation f(p) +f ' (p}T(p) — p)=0. (We must

P P

Figure 2.17
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assume that f/* 5 0 for T to be a well-defined function.) Clearly, if f(p) = 0,
we have T(p) = p, and conversely, thus we are in reality seeking a fixed
point of 7'

Suppose T has the property of contraction on some interval I. There is a
¢ <1 such that [Tx — Ty| <c|x — y|, all x, yel. Then Newton’s method
works. There is a root of f(x) = 0 (or f'(x) = 0) on the interval I, and it is
the limit of the sequence x,, Tx,, T?x,, ..., where x, is any point of I.
This is the content of the fixed point theorem.

We now state and prove it explicitly for subsets of C(X). It will be clear
that the theorem is true for subsets of R", by virtue of the same argument.

Theorem 2.15. Suppose S is a closed set of functions in C(X): that
S contains all limits of sequences in S. Suppose T is a mapping of S onto S
which is a contraction, that is, there is a ¢ < 1 such that

IT) - Tl <clf—gll  forallf,geS

Then there is a unique continuous function f, such that T(fy) = f, .

Proof. Certainly the fixed point is unique. For if T(f,) = fo and T(f1) =/, then
Ifo —fill= ITR) — T <cllfo—fill <l fo—All unless [fo—fill=0, that
is, fo=A.

Now let fe C(X). Let the sequence {f,} be defined as follows: fi = f, o = Tf1,
fi=Tf, ..., fi=Tf-1. {f}isa Cauchy sequence. For

fosr = £l = 1T — Th-sl < ¢ llfs = fo-ul

so we can verify by induction that

I fosr = full <" llfs = Soll

Thus, for m > n we have

o — Al sH'J"g:(fm—f,) <5 Ufies =1l

[4

< (mz’lcf) 1= foll < Ui~ fll T,
J=n

Since ¢ < 1, {f;} is Cauchy, so has a limit f; € C(X). Since .T is continuous, Tfo =
lim Tf, =lim f,,: = fo, and thus f; is the desired fixed function.

LE- n- o

As an illustration on the real numbers let us prove that if a>0, there is
an x, > 0 such that x,2 = @, by Newton’s method. First, we describe the
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map T. Let p>0, the linear approximation to x> —a at p is p>—a
+ 2p(x — p). Thus, the zero of this linear polynomial is

2
‘a—p 1
Tp= ) +p =§(p+ )

Clearly, if T has a fixed point x, , we must have x,2 = a. Thus, we must show
that T is a contraction on some closed interval:

Tx — Tyl =
X =3

a a a
x‘)"";—; = x—y+x—(y—X)

1
2
1
2

yll

Since a, x, y are all positive, 1 — (a/xy) < 1, so we need only ensure that
1 — (a/xy) > —1,for Tto be acontractionwithc = 3. Letl = {x: x> >a/2}.
Then for x,yel, xy > a/2, so a/xy <2, which is the desired inequality.
Thus, by the fixed point theorem there is an x, with x,°> > a/2 such that
xo2 =a.

We shall now give a somewhat more subtle application of the fixed point
theorem. Sometimes a relation between two real variables determines one
as a function of the other. For example, the relation x + y = 0 determines
y as a function of x:y= —x; x2 + y* =1 gives y = (1 — x?)'/2 near the
value (0, 1), and near (1,0) we should write x = (1 — y%*)!/2 as a function
of y. The relations

e? =1 sin(x(log y)) =0
are somewhat less transparent, nevertheless we can ask whether or not they
do determine y as a function of x.
Suppose now, in general we have an equation (see Figure 2.18)
Fix,y)=0 2.47)
defined in the plane. We ask: does there exist a function g of x such that
(2.47) amounts to saying y =g(x)? More precisely, is there a function g
such that
F(x,y)=0 ifand onlyif y=g(x)

It is not hard to find a necessary condition. For there to be such a function
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F(x,y)=0

|

y -l

=
BN
-
>

/
visa function of x yis not a function of x

Figure 2.18

it must be the case that each line x = constant intersects the set F(x, y) =0
in only one point (see Figure 2.19). Thus the function F(x, y), as a function
of y on lines x = constant must take the value 0 only once. The root of
F(x, y) =0 is then the value g(x). Now we recall from one-variable theory
that a function H(y) will take all values once if H'(y) #0. Thus the reason-
able condition to impose on F is that it has a continuous partial derivative
with respect to y, and 0F/dy 0. This condition turns out to be enough.

More precisely, suppose that F is defined and has continuous partial
derivatives in the neighborhood of the origin in R?, and dF/dy(0, 0) # 0.

¥y = g(x0)
F(x,y) =0
0 X0

Figure 2.19
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We seek a function g defined in a neighborhood of x = 0 such that g(0) =0
and F(x, g(x)) =0. If we fix x=x, near 0, then we seek a root of
F(x,,y)=0. This brings us right back to Newton’s method. Define T
as a function of y as Newton did: T(y) is the zero of the linear approximation
of F(x,, y) at y; that is,

OF
F(xo, )+ a—y(xo,y)(Ty -y)=0

or

a 1
Ty=y- [a—’; (%o, y)] F(xo, ) (2.48)

Just as in Newton’s case the solution of F(x,, y) = 0 is the fixed point of T.
Thus, we need only verify that 7 is a contraction in some interval of values of
y for x, near x so that it will have a fixed point; and we define g(x,) to be
that fixed point. This application of the fixed point theorem really works, as
we now shall prove.

Theorem 2.16. Suppose that F has continuous partial derivatives in a

neighborhood of (0, 0), and that F(0,0) =0, 0F/3y(0,0) #£0. Then there is a
Sunction g defined for x in some interval (— ¢, €) such that

F(x,y)=0 ifandonlyif y=g(x)

Proof. Instead of (2.48) we consider something slightly simpler. For x near 0,
define

oF 1
L()=y— [5 , 0)] F(x, y) (2.49)

We want to find the fixed point, if it exists, of (2.49). Thus we seek suitable intervals,
—&<x <g, —n <y<nin which T is a contraction

oF -1
L(y)—TAy:) =y — y2 — [5; o, 0)] [F(x, y1) — F(x, y2)] (2.50)

By the mean value theorem there is a £ between y; and y, such that

0
F(x, y1) ~ F(x, y3) = a—’; x, &1 — 72)



2.11 The Fixed Point Theorem 217

Equation (2.50) becomes, upon substitution,
oF oF
T - LoD =0 -1 -5 0.0 L @5

Now the term in brackets is continuous in (x, £) and has the value 0 at
(0, 0). Thus we may choose ¢ so that that term is less than } if —¢ < x <e¢,
—e<y; <8 —e<y,<e¢and £ is between y, and y,. With this choice
of ¢, (2.51) gives

I T,(y1) — T.(y)| < 3ly; — yal

so T, is indeed a contraction. Define g(x) as the fixed point of T,. Then, if
F(x, y) =0, then by (2.49) T.(y) =y, so we must have y = g(x). On the
other hand, if y = g(x), then T, (y) = y, so again by (2.49) we must have
F(x,y) =0. The theorem is proved.

To say that the function g exists is already good enough, but much more is
true: g is a continuously differentiable function. We will leave the verifica-
tion of this fact to the interested reader (see Problem 58). In Section 7.2
we shall reconsider this theorem (known as the implicit function theorem)
in many more variables. The beauty of the fixed point theorem is that the
general context does not at all complicate the ideas, nor the verifications.

o EXERCISES

31. Find, by Newton’s method, a sequence of numbers converging to
the square root of a, for any a >0. Now, do the cube root.
32. Find a sequence converging to a root of these polynomials:
@ x*+x*+x+1 () x*—2x2—3x+2
(b) x2—x+1 @ x¥—x—1
33. (a) Let F(x,y) =xsin(xy). For what values of (x,y) such that
F(x, y) = 0 is it true that nearby the equation F(x, y) =0 defines y as a
function of x?
(b) Same problem for
4 F(x,y)=xy*+2xy+1, (i) Fx,»)=x"—,
(i) F(x,y)=x*+y*
34, Let F(x, y) be differentiable in a domain D, and (xc, yo) € D such
that F(xo, o) —0. Suppose g is differentiable and has the property
g(xo) = o, F(x,g(x)) =0. Show that

oF|6x(x0, Yo)

90 = = FEayCre, o)
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35. Find g’ where g is defined implicitly by
(a) xsin(xy)=0 ) ev=1
(b) cos(x+y)=y () ev=y

e PROBLEMS
57. Prove the fixed point theorem in R":

Theorem IS is a subset of R" and T is defined on S and is a contraction
on S, then there is a unique Yo € S such that T(yo) = Yo.

58. Let F have continuous partial derivatives near (xo, o) and suppose
F(xo,y0) =0, 0F/8y(x0,y0) #0. Let g be the function described in
Theorem 2.15 (F(x, y(x)) =0 and g(xo) =y.). We can prove that g is
differentiable as follows.

(a) First of all, by the mean value theorem, for any (x, y), there is a

(£, 1) on the line between (xo, o) and (x, y) such that

oF oF

F(x’ y) - F(XOs yO) = a—J; (f? 7])(x - xo) + 5 (fﬂ n)(y _yo)

Why is the mean value theorem applicable ?

(b) Now, if we substitute y = g(x), yo = g(xo), we have

0 oF oF

e (&, Mx — x0) + % (€, (g(x) — g(xo))

Thus

gx) —gx0)  — dFjox(¢, 1)
X — Xo oF|oy(¢, m)

Conclude that g is differentiable and

0F|0x(x0, g(x0))

9% = = S By(re. 9(xa))

2.12 Summary

A sequence z,,...,z,,... of complex numbers is a function from the
positive integers to C. The sequence {z,} converges to z if, for every ¢ >0
there is an N such that |z, — z| <eforn > N.

A convergent sequence is bounded, but not conversely. A monotonic
bounded sequence of real numbers is convergent. Cauchy criterion: a
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sequence {z,} converges if, for every ¢ > 0, there is an N such that |z, — z,) <e¢
for both n, m > N.

The series formed of a sequence {z,} is the sequence of sums oz
If the sequence of sums converges, we say that the series converges and denote
the limit by > =, z,. If Y z, converges, then z, — 0, but not conversely.
If {c} is a sequence of nonnegative numbers, Y. ¢, converges if and only
if the sequence )., ¢, is bounded. A series Y z, converges absolutely if
Ylz,| < 0. Absolutely convergent series may be summed in any convenient
way.

Tests for Convergence

COMPARISON TEST. Suppose |z,| < |w,| for all but finitely many »n. Then
(@) if ) |w,| converges, Y z, is absolutely convergent, (i) if Y |z,| diverges,
so does Y. |w,|.

ROOT TEST. If |c,|'" < r for some r < 1 and all but finitely many n, ¥ ¢,
is absolutely convergent.

RATIO TEST. If |, /c,| < r for some r <1 and all but finitely many »,
Z ¢, is absolutely convergent.

The sequence {v,} of vectors in R is said to converge to v if, for every
& > 0, there is an N such that |v, — v|| <efor k > N. A sequence of vectors
converges if and only if it does so in each coordinate.

A set S is closed if and only if v, € S, lim v, = v implies ve S also. Every
sequence contained in a closed and bounded set has a convergent subsequence.

An R™-valued function defined in R" is said to be continuous at v, if f is
defined in a neighborhood of v, and v, — v, implies f(v,) <f(v,). A func-
tion is continuous on a set S if it is continuous at every point of S. If Sisa
closed and bounded set, and f is a continuous real-valued function defined
on S, then fis bounded and attains its maximum and minimum.

Sections 2.6 and 2.7 are mainly about integration. We shall not recollect
the definitions here; only the major results.

FUNDAMENTAL THEOREM OF CALCULUS. Suppose f is continuous on the
interval [a, b]. Then the integral

Fo = [ f

exists for all x € [@, b]. Fis differentiable on (g, b)) and F' = f.
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FUBINI'S THEOREM. Let f be an integrable function defined on a rectangle
R=1I; x - x I,inR". | fcan becomputed by iteration:

fRf=f,l["' Ulnf(xl, eey X") dX"

Let £ be a real-valued function defined in a neighborhood of x, in R*. If
v is a vector in R", the directional derivative df (x,, v) of fatx,inthedirection
v is defined by

dx"1 ] dx!

im L ot 1) = /(%o)

t—0 t

(if it exists). The partial derivative of f with respect to x’ at x, is

T x0) = dfx0, B
X

If these partial derivatives are all defined and continuous near x,, then
df (X, v) is linear in v. We can write

of .,
df=za—){idx'

If the partial derivatives 8f/0x’ all exist in an open set we may be able to
compute the derivatives d(df/0x")/ox’. These are the second-order partial
derivatives. If all first and second derivatives of f exist and are continuous
in an open set N, then

o*f o

ax ox1  oxl ox'

throughout N.
Suppose that f has continuous partial derivatives in the domain I x D,
where I is an interval of reals, and D is a domain in R". Let

F(x) = [ f(x,y)dy
D
Then F is differentiable and

dF of
=] 5y
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Suppose f is a real-valued function defined on R. We say that f(x) con-
verges to L as x — oo written lim f(x) = L if |f(x) — L| can be made arbi-

trarily small by taking x sufficiently large. If now fis a continuous function
on R such that

tim [

X 00 a

exists, we say that f is integrable on R. If lim [ | f| exists, f is absolutely
integrable. Integral test: If f is a positive, decreasing continuous function
defined on R, then [? fexists if and only if Y22 f(n) < co.

Let X be a closed and bounded setin R". We denote by C(X) the collection
of all complex-valued continuous functions on X. C(X) is a vector space.
If fis in C(X), the length of fis

I/l = max{|f(x)|: x € X}

For f, g in C(X) the distance between fand gis || f —g|. If {/,} is a sequence
in C(X), and || f, —fIl =0 as n— oo for some fe C(X), we say that {f,}
converges uniformly to f. Cauchy criterion. Suppose {f,} is a sequence
in C(X) satisfying the following condition: for each & > 0, there is an N such
that || f, — f,.| <& whenever n,m > N. Then there is an fe C(X) such that
f = f uniformly.

INTEGRATION. If X is an interval in R, and £, — f uniformly in C(X) then
also [%f, — [% f uniformly.

The exponential function, denoted exp(cx), or e* for any complex number
¢ is the solution of the differential equation y’ = ¢y, y(0) =1. It has these
properties:

2 (ex)

ecx= Z

n=0 n!

ec(x+y) = e
e°* Is never zero.

FIXED POINT THEOREM. Let S be a closed set of functions in C(X) and T a
mapping of S onto S which is a contraction; that is, there is ¢ <1 such that

IT(f) - Tl <cllf—gll  foralfgeS

Then there is a unique continuous function fo such that T(f5) = fo.
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IMPLICIT FUNCTION THEOREM. Suppose that F has continuous partial
derivatives in a neighborhood of (0, 0), and that F(0, 0) = 0, dF/éy(0, 0) #0.
Then there is a function g defined for x in some interval (—e, ) such that

F(x,yy=0 ifandonlyif y=g(x)

® FURTHER READING

M. Spivak, Calculus, Benjamin, New York, 1967. This is an eloquent
text in the one-variable calculus. It is an excellent reference for a full
treatment of the material in this chapter.

T. A. Bak and J. Lichtenberg, Mathematics for Scientists, Benjamin,
New York, 1966. This is a review of the theory of calculus from the point
of view of the physical scientist. It includes a chapter on numerical analysis.

C. W, Burrill and J. R. Knudsen, Real Variables, Holt, Rinehart and
Winston, New York, 1969. An advanced text, going thoroughly through
the material of this chapter and beyond to the theory of Lebesque integration.

® MISCELLANEOUS PROBLEMS

59. Let {x,} and {y.} be sequences. Then {x,+ y.} is also a sequence.
So also is {rx,} for any real number r; thus the collection S of all real
sequences is a vector space. Show that it is nof finite dimensional.

60. Show that the collection B of bounded sequences is a linear subspace
of the vector space .5 of all sequences (Problem 59).

61. Show that the collection C of convergent sequences is a linear sub-
space of B. Also Co, the collection of all sequences converging to zero is a
linear subspace of B. These spaces are all infinite dimensional.

62. Define the function “lim” on convergent sequences in the obvious
way: lim: C — R: lim{x,} =lim x,. Show that lim is a linear function.

63. What is the dimension of the space of linear functionals on C which
annihilate C,?

64. Let x;, =4, x,=34+ %), and once x,...,x, are defined, let
Xn+1 = $(xn + 3/xs). Prove that {x,} converges. Assuming that, find the
limit.

65. (a) Show that for every integer k,

lim r*/(n+ 1) =1
lim #¥/(n + 1)+ =0
lim #**!/(n + 1)* does not exist

(b) Let k be an integer, and 1 >4 >0. Show that lim #*4" = 0.
(c) Show that lim n/h" does not exist.
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66. Let x, =1, and in general

3 1+ x,
Xne1 =3

+1 3+x"
Find lim x,.

67. Suppose lim z, = z.
(a) Let y, = }(z,-1 + z,). Then lim Yo =2z.
(b) Let k be a positive integer. Now let {yn} be defined by

1
=T (Zat Zogr + 0 + z1i)
Then lim y, = z also.

(c) This time take
1
y,.=E(Zl+"'+Zn)

Once again lim y, = z.

68. Suppose that f is continuous at ¢, and lim ¢.=c. Then
lim f(c.) = f(c).

69. Let {c.} be a sequence of complex numbers, and suppose (|c,|)!"" = R.
Show that R~" is the radius of convergence of > c,z".

70. Let {s,}, {t.} be two sequences of positive numbers such that lim s, 7;!
exists and is nonzero. Then > s, converges if and only if > 1, converges.

71. Let {c.} be a sequence of positive numbers. Suppose that for every
sequence of positive numbers {p,} such that > p, <o we have also
> capn<< 0. Prove that {c.} is bounded.

72. Verify Schwarz’s inequality:

(Z”l |a,.b,.|) < 2 |a? - 2 |ba?

(Hint: Tt is true by virtue of the same fact for finite sums, which was dis-
cussed in Problem 74 of Chapter 1.)

73. Prove that if > |a.|> <o, then X (I/m)la.| < 0. Is the reverse
implication true?

74. Let S be a subset of R". Show that | (S)={veR": {(v,s> =0
for all s € §} is a closed set.

75. Suppose that fis a continuous positive real-valued function defined
on a set Sin R". Show that log fis also continuous.

76. Suppose that fis a continuous real-valued function defined on all of
R". Let x,, X, € R" and c € R be such that f(xo) < ¢ <f(x(). Show that
there is an x, € R" such that f(x;) = c.
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77. Show that if fis a continuous function on the interval [ taking only
rational values, then f must be constant.

78. A set Sin R"is called connected if every continuous real-valued func-
tion has the intermediate value property. Show that this is equivalent to the
following definition:

A set S is not connected if there is a continuous real-valued function f
defined on S which takes precisely two values.

79. Verify the following assertions:

(a) A ball in R" is connected.

(b) The set of integers is not connected.

(¢) The sphere {x € R3: (x| = 1} is connected.

(d) The union of two balls in R" is connected if and only if they
intersect.

(¢) An open set is not connected if and only if it can be written as the
disjoint union of two nonempty open subsets.

(f) A closed set is not connected if and only if it can be written as the
disjoint union of two nonempty closed sets.

80. Let f be a continuous function on the closed and bounded set X.
Then fis uniformly continuous; that is, given ¢ > 0, there is a 5 > 0 such that
for all x, y € X such that |x — y| < & we have | f(x) — f(»)| <e. Supposing
not, we can derive a contradiction as follows. There is an &, such that
for every 8, < |x —y| < 8 implies | f(x) — f(»)] < & is not true. Taking
8 = 1/n, there are x,,, y, with |x, — y.| <1/nbut | f(x,) — f(3.)| =€c. Since
X is closed and bounded, these sequences have convergent subsequences:
{x’s}, {yn’}. Show that lim x’, = lim y’, but | f(lim x")) — f(lim y".)| > &, a
contradiction.

81. Let L be a linear functional on R" and choose v, such that |jvg]l =1
and

L(vo) = max{L(v): llv|| =1}

Show that for every v € R", L(v) = L(vo) <v, vo).

82. Let f be an integrable function on the rectangle [a, b]. Let R, be
rectangle [a, b+ t(b—a)], for 0 <¢<1. Verify that f is integrable on
each rectangle R,, and define F(t) = [z, f. Show that fis continuous. Is
[ differentiable?

83. Let Q ={p/q: p, q integers with 0 < p <q}. Q is a subset of the unit
interval [0, 1] which is not measurable. For surely j xe =0, and if
RiU -+ UR,> Q, then also Ryu -+ UR,>[0,1], so | xz =1, and
thus j’ Xe = 1.

84. Let f be an integrable nonnegative function defined on the domain
B< R? and consider D={(x,y,2)e R®; 0<z<f(x,5); (x,y)eB}
Verify that Vol(D) = [s f.
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85. Suppose that fis a continuous decreasing real-valued function of a
real variable and lim f(x) =0. Then j{;" Jf(x) sin x dx converges (compare

this with Leibniz’s theorem for series).
86. Suppose that f'is a real-valued function defined on R". We say that

f&X)—>+o as [x]|—o

if, for every M there is a K such that f(x) > M whenever |x|| > K. Show
that if fis a real-valued continuous function on R" such that f(x) - + o as
|Ix|| = o, then fattains a minimum at some point.

87. Define

f(x)—~>0 as [x[|—->o

in a way suggested by the definition in the above problem. Show that if a
continuous function on R has this property, then it attains both a maximum
and a minimum on R",

88. Suppose f is a real-valued function which has continuous partial
derivatives in the ball {x € R": ||x|| <1}. Show that the function

1
9= suwnar
1]
has the same properties, and find Vg.

89. Let /2 be the space of sequences {c,} of real numbers such that

@

> leal? < o0

n=1

Because of the result in Problem 72 (Schwarz’s inequality), if {c.} and {d,}
are in {2, then

deah (d> = ic d,

converges. Show that /2 is a Euclidean vector space with that inner product.
90. The space of continuous functions on the unit interval can be made
into a Euclidean vector space in this way:

Loy=[ e

Corresponding to this inner product is a notion of length which we denote
by |- Il so as to distinguish it from the modulus || - [lo introduced in the
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text. Show that this length is deficient in these respects:

(a) We can have || f,|l; =0 without having || f,|lo —0.

(b) We can have a sequence {f;} of continuous functions which is a
Cauchy sequence in the sense of the length || - ||z, but which does not
converge to a continuous function. On the other hand, show that

(©) if [{fillo =0, then [ £;]l =0 also.

91. Suppose L: C[0, 11—+ R is a linear function. Show that L is con-
tinuous if and only if there is an M > 0 such that

LIS M |l
92. Show that there is a unique differentiable function £, such that
S o(x) = (fo(x))* for all x and fo(0)=1%

Do it by applying the fixed point theorem to the function T defined below
ontheset{fe C[4, £]: Ifll < $}:

1760 = riedr+

93. We can talk of open and closed sets, and convergence in the space M*
of (n X n) matrices, merely by considering them as vectors in R, Doing so
verify these statements:

(a) The set G of invertible (# X n) matrices is open.
(b) The set of triangular matrices is closed.

(c) The function 4 — A2 is continuous.

(d) If p is any polynomial in one variable the function

T—>p(T)

is continuous.
(e) lim (x/n!) D¥_0 (1/n!)T" exists for all Te L(R", R™).

94. Suppose g is a continuous real-valued function on the interval
[—a,a]l. Show that the implication

| ewrwya—o

for all fe F implies g =0 holds whenever F is any one of these classes:
(@) F=C([—a,a).
(b) F=C'([—a, aD).
(c) Fis the collection of all polynomials.
(d) Fis the collection {y:: I a subinterval of [—a, a]}.
(e) Fis the collection of all continuously differentiable functions such

that f(—a) = f(a) =0.
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