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16- E?=i l/ diverges. Let sn
= ?=i 1/n. Then

1 1 1 1

S2N~Sn~N+~1
+
'"

+
2N~N2N "2

Thus, {SN} is not a Cauchy sequence.

The sum of a series of positive numbers is particularly easy to work with.

For if {cn} is a sequence of positive numbers, then the series {Yj=i ck)
is an increasing sequence, so by Theorem 2.1 (as rewritten in Problem 1) this

sequence converges if and only if it is bounded.

Proposition 4. Let {c} be a sequence of nonnegative numbers. The

following assertions are equivalent.

(i) ck converges.

(ii) {Yj= i ck} is bounded.

(iii) For each e>0, there is an N such that for allm>N,

Zcfc<
k = N

The proof of the equivalence of (i) and (ii) is essentially given in the preced

ing paragraph. Part (iii) is just the Cauchy criterion restated for positive

series (see Problem 11).

Examples

17. =i l/! converges. For n! > 2""1 for all n, so

1 1
<

n! 2"_1

and thus for all N,

N 1 N-1 1

y < y <2

by (2.5).
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18.

ta i )
AVn n + cos(l/n)/

converges. For

1 1 11
<

n n + cos(l/n) n n + 1

Thus, for all N

V /I _

1 \ / 1 1_\ _

1 1
_

1

M\n n + cos(l/n)j
~

,Mn n + 1 ) 2+2 3
+
'"

1 1
+
]v-]v+-T<1

There is no such simple criterion as Proposition 4 for arbitrary series of

complex (or real) numbers, and the question of convergence as well as com

putation of a limit can become extremely subtle. However, if for a given
series the series formed of the absolute values converges, the situation is

considerably clarified. Ordinarily we shall discuss the convergence of a

series only in the happy circumstance that the corresponding series of absolute

values converges.

Proposition 5. Lef {ck} be a sequence of complex numbers. If \c\

converges, Yjck also converges.

Proof. Let t be the sequence of partial sums of2 I ft I and s the partial sums of

2 ft . Notice, for m > n

\Sn S I ft <, 2 lC*l =tm~t

Thus, if {t} is a Cauchy sequence, so also is {s}.

Definition 3. Let {ck} be a sequence of complex numbers. c is

absolutely convergent, if |c| converges. If |c| diverges, but c

converges, we say c is conditionally convergent.

There are such things as conditionally convergent sequences. In fact,

Z"=i (-!)"/ converges. But as we have seen in Example 16 the series

Yj?m ! 1/n of absolute values is divergent. It is easy to see thatL t (- l)"/n
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converges. Let {s} be the sequence of partial sums. Then the subsequence
{s2n} is decreasing, and bounded below by su and the subsequence {s2n+1}
is increasing, and bounded above by s2 . Thus, both these subsequences
converge. Since

l^n+ l ~ s2n\ <
n + 1

they have the same limit. It is easy to deduce that the full sequence also

converges to that common limit. Here is the proof in a more general case

(known as Leibniz's theorem).

Proposition 6. Let {cn} be a decreasing sequence ofpositive numbers such
that lim c

= 0. Then (- l)"c converges.

Proof. Let j=2*=i ( l)*ft. We consider the sequences of even and odd

partial sums separately. The sequence {s2} is decreasing, since

*2(n +l) S2 C2n + 1 C2n+1 ^0

Similarly, the sequence of odd partial sums {s2+i} is increasing. Furthermore

these sequences are bounded, for, given any n,

Sl <S2 + i =S2 C2 + i <s2<,s2

so {s2} is bounded below by Si and above by s2 . The same is true for the sequence

fen+i}. Thus, by Theorem 2.1 lim s2
=

s, lim s2+i = s' both exist. Furthermore,
n-eo n-.oo

s' s = lim s2 + 1 lim s2n
= \\m(s2n + 1 s2) = lim(c2n+0=0, so .$' = .$. Since both

sequences, of odd partial sums and even partial sums converge and have the same

limit, the whole sequence also converges to that limit.

Notice that this argument does not give any hint as to the value of

( - l)"/n. Outside of the case of Proposition 4, there is no positive asser

tion that can be made about conditionally convergent series. In fact, they

tend to behave very badly, as the following illustrative example shows.

Example

19. The sequence

111111

2+2+4+4+4+4+-
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is the same as 1 + 1 H + 1-1 and thus diverges. Since the

general term is decreasing to zero, by Leibniz's theorem this series is

conditionally convergent:

111111 11 1
c 1 i I----H h V

' "

2 2 4 44 4 2n 2n 2n

n times

The sequence of partial sums is

-,0,-,0,-,0, ...,, 0,
2 4 4 2n

and thus obviously converges to zero. However, we may now

rearrange terms of the series so that it no longer converges ! Consider

the same series where in each group we first add the positive terms

and then the negative terms :

(2.7)

The corresponding sequence of partial sums is

1111 n-1 1_ n
> 0, , , , u, . . .

, , . . .
, , u, . . .

2 4 2 4 2n 2n

Thus, there is a subsequence: {$, \, ...} and another: {0,0, ...} so

we cannot have convergence of (2.7). We leave to the student

(Exercise 9) to show that it can be further rearranged so that it once

again converges, but this time to one !

No such foolishness holds for absolutely convergent series. We may

attempt to sum the series in any way we please. If we arrive at a limit, it is

the sum. In fact, if c is an absolutely convergent series we may sum first

the positive terms, and then the negative terms; and c is the sum of these

two sums. We conclude this section with the proof of these facts.
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Proposition 7. Let c be an absolutely convergent series of real numbers.

(i) Let

+ \ck if ck > 0 _

_
f-c if c < 0

k

\0 if c,<0
k

j 0 if c,>0

Then the sums ck , ck~ converge andYJck = YJck ~

Z CH

(ii) (Rearrangement.) Let g be a one-to-one mapping of the positive integers

onto the positive integers. Then cg(n)
=

c .

(iii) (Regrouping.) Let h be any strictly increasing function from P into P.

Let

Hn)

d= Z ck
k=h(n-l)

Then </ = c .

Proof.

(i) Since the sequence {2*=i Iftl) is bounded by absolute convergence, and

2 Iftl > 2ft+.2ft"
*=i *=i *=i

the sequences 2*=i ft+, 2*=i c*~ are also increasing and bounded. Thus they con

verge to, say s, t respectively, by Theorem 2.1. We have to show that 2 ft
= s t.

Let e > 0 . Then there are M, N2 such that for n >M,

2ft+-*
*=i

and for n>N2,

n

2ft"-

<

2'

<-

Then for n > max(7v*i, N2),

2ft-(j-0 2ft+- 2 ft" -fr-0 <

(ii) Let ^ be a one-to-one map of P onto P. Then g-- is defined and also maps

P onto P into a one-to-one fashion. For each n, let JV =max(^(l), ...,g(n)).
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Then

n

2ift(i^ 2 iftl ^2 iftl
*=i *=i

for all n, so the series 2 ft is absolutely convergent. Similarly,

n Nn it

2 ftV> < 2 c*+ ^2 c*+ and 2 ft-<*> ^2 c*-

for all , so we have 2 ft+c*> ^ 2 c*+> 2 c<*> ^ 2 ft"- Applying the same reasoning
but reversing the roles of the two series, we obtain the reverse inequalities so that

in fact, 2ft+(*)=2ft+ and 2ft-(*)=2ft"- Thus, by part (i) we obtained the

desired equality; that is, 2 ft<*>
= 2 ft

Part (iii) is actually true for any convergent series. Let 2 ft
=

c, and the strictly
increasing function h be given. Notice that h(ri) ;> n for all n. For e > 0, there
is an N such that

2ft- c <

for all n > N. Thus, for

n>N, 24.= 2 2 cj= 2 cj
*=1 *=lj=h(*-l) y=i

and h(n) > N, so that

2dn-c
*=i

<

ll<n)

2CJ~C
J=l

<

EXERCISES

7. Show that

=i\n n+lf

converges.

8. What is

f (-D"

"=i a

where a2 = 2", 2+i =3"?
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9. Rearrange the series

i_i+i-i+i-1+...+i-i+...-i+
2 2 4 4 4 4 2 2 2

so it has the sum one.

10. Can the series 2 ( 1)"/ be rearranged so as to have sum 10,000?

PROBLEMS

9. Suppose 2 z-
= z and 2 w

= w- Snow tnat 2 (z + w) = z + w.

10. Suppose

(a) 2 z and lim w exist. Does 2 zw exist ?

(b) 2 z and 2 w exist- Does 2 z" w" ex'st ?

11. Prove that 2 z converges if and only if for all s >0, there exists an

N > 0 such that

2 * < e for all n >N

Deduce that Proposition 4(iii) is true.

2.3 Tests for Convergence

Since the theory of series is so important and the definition
of convergence

unwieldy, there has developed a large collection of tests (or criteria) for

convergence which are more or less easy to apply in the relevant cases. We

have already given some criteria for convergence.

(1) Cauchy criterion: c converges if and only if for every > 0, there

is an integer N such that |c+1 + + cm\ < for all m > n > N.

(2) If the sequence {c} decreases to zero,
then (-D"cn converges.

(3) If the sequence {c} is nonnegative, c converges if and only if the

sequence {Yj=i ck} of partial sums is bounded.

The last condition, which can be considered as a condition for absolute

convergence, gives rise to the following criterion which is the basic one.

The idea is to compare a given series with a known convergent one (if we

suspect that it converges) or to a known divergent one (if we suspect that
it

diverges).
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Examples

20. Z I/"' converges, as we have seen in Example 17. There, we

noticed that 1/n! <2~n+1, and since Z2_B+1 is convergent, so is

Zl/!. For

JV / 1 \ N 1 a> 1

Z^I ^r<Zr forallN

=l\n!/ n=\l n=lZ.

21.

> sin -I

diverges. For if x is small enough, sin x > x/2. Thus, there is an

N such that ifn>N,

sin(-) >:

\nj 2n

and thus for m>N,

fi \n/ =i \n/ 2jv+in

But we can make the last sum as large as we please by taking m large

enough. Thus, Z=i sin(5/n) is not bounded, and so it is not con

vergent.

22.

z
*b (1 + 0"

is absolutely convergent. For |1 + i\ = J2, so for any m,

m 1 1 i-

V = Y1 r=- < oo since J2 > 1

,tb|i + i|" nh(^2y
v

The idea behind these examples is contained in the following theorem.
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Theorem 2.3. (Comparison Test) Let {c} be a sequence ofcomplex numbers.

If there is a positive number K and an N, and a sequence {p} of positive

numbers such that

(i)\cn\<KPn, forn>N,

CO

(ii) Z Pn < >
n=l

then Z c converges absolutely.

If instead, we have

W \c\>KPn, forn>N,

oo

(ii)' Z Pn
= >

11=1

then Z k| diverges.

Proof. In the first case the sequence of partial sums is bounded.

2 iftl = 2 iftl + 2 ifti<2ifti + *2/><co
k=l k=l k =W+l K=l

In the second case, the sequence of partial sums is unbounded.

2 iftl = 2 iftl + 2 iftl ^ 2 iftl + I p-
kti s=i t=w + i t=i t=w + i

which is unbounded as n -> oo.

Examples

23. V^=0z7n! converges absolutely for any complex z. Choose

an integer N so that JV> 2|z|. Then, for all n, (N + n)\ > (2|z|)n,

so that

\z\N+" Jz\N
(N + n)\~ 2"

Since 1/2" converges, so does |z|7" ! by the comparison test. As

a corollary result we obtain lim z7n! = 0 for all z (this however could

have been derived directly).
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24. Z nkz" converges absolutely for all z, |z| < 1 and all integers k;

and otherwise diverges. If |z| > 1, then limn*z#0, so the series

can hardly converge. Now suppose |z| < 1. We want to prove the

convergence by comparison with the geometric series, so we must

account for the effect of the coefficients nk. Note that (n + l)/n -> 1

as n -> oo, thus also (n + l)/nk -> 1 (Exercise 13). Let s be any number

greater than 1 . Then there is an N such that for all n>N,

(n + 1)* .

,.t k
- r-^- < s or (n + if < snk

n

Thus, by inductionwe can conclude that, for all n > 0, (N + ri)k < s"Nk.

Thus, (N + n)k\z\N+n <(s\z\)"Nk\z\N. We should choose J<l/|z|,
so that Z (s\ z I)" < - With the choice then of s: 1 < s < l/\z\,
we can apply the comparison test to obtain the convergence of our

series Z nkz".

25. Zw'z" diverges for all z#0. We have seen in Example 2

that for any complex number c, lim c7n! = 0, or, replacing c by z~l,
n->oo

lim l/n!z" = 0. This precludes the possibility that limn!z" = 0,
B-*00

so the given series cannot converge.

26. Z 1/n2 converges. In a later section we shall give another

proof of this, at present we rely on a tricky observation.

.i\n n + 1/ N + 1

Thus, the series

^
\n n + 1/

converges to 1 . But

1 1 1

n n + 1 n(n + 1)

thus

00 1

I = 1
A n(n + 1)
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Now, 2n2 > n2 + n = n(n + 1), thus

1 1
s<
n2 n(n + 1)

so by comparison Z l/2 also converges.

27. Z llnil+l) converges for any e > 0. Let k be an integer so

large that ke > 2. Then, for any n ; if m ^ nk,

1 1 1
: < <

m(l
+ e)

-

n*(l+<0
=

nk+2

Between nk and (n + If there are (n + if - nk integers. Since

1m'"
there is an n0 such that for n > n0 ,(n + If <, 2nk, or (n + if - nk < nk.

Thus,

(BV)k 1 n* 1

m=ii+im<1+-nk+2~n2

Well, now we can show that the sequence of partial sums

Ui 7^]
is bounded, for

Nk J nok 1 N" J

Z (l+e)
^ Z 7(1+7)

+
_

h (1+e)
n=l n 11 = 1 " =nofc+l "

JV (B+l)k 1

n=no m=n+ 1 *

*o' + Z r2^o'I + Z^2<00
n=no

" "

Now a special kind of a series is a power series: the geometric series, and

the series in Examples 24 and 25 are such series. A power series is a series
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of the form
00

Zfl-z*
B=0

Such a series has the property that if it converges for some z0 ,
then it con

verges for all z such that |z| < |z0|, and if it diverges for some zu then it

diverges for all z such that \z\ > IzJ. Thus, the geometric series diverges

for \z\ > 1 and converges for |z| < 1 ; the series Z z"/n! converges for all z,

and Z!z" converges for no z. This general property of power series is

easily deduced from the comparison test. We make the following somewhat

stronger statement.

Proposition 8. Let {c} be a sequence of complex numbers.

(i) If {\c \t"} is boundedfor some positive number t, then Z cz" converges

absolutely for all z, \z\ < t.

(ii) If{\c \t"} is unbounded, then Z cnz" divergesfor all z, \z\ > t.

Proof.

(i) Suppose M> |c| t
"
for all n. Let z be such that |z| < t. Then

|ftz"l<:|ft|f"(Y<m(^\" for all n

and since |z|/f<l, 2(lzl/0"<> so by the comparison test the series 2CZ"

converges absolutely.

(ii) If {|c| ?"} is unbounded so is {cz"} for all z, |z| > t. Thus, we cannot have

lim cnz" = 0, so 2 ft z" cannot converge.

Definition 4. Let {c} be a sequence of complex numbers. The power

series associated to {c} is the series Zb*=o anz"- The radius of convergence

of the power series is the least upper bound R of all real numbers f such that

the sequence {| c |f"} is bounded.

According to Proposition 8 the series Zb=o anz" converges for z inside

the disk of radius jR(|z| < R), and diverges for z outside that disk (see

Problem 12).

Examples

28. Zb=o z7n has radius of convergence one. For if t > 1, then

{f7n} is unbounded, and if t < 1, t"/n -* 0. Notice that we can make

no clear assertion for z on the unit circle, since Zb=o 0)7W diverges,

but Zb=o ( 1)7" converges.
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29. If {c} is bounded, but does not tend to zero, Zb*=o cbz" nas

radius of convergence one. For clearly {cf"} is bounded for f < 1,

and unbounded for t > 1 .

There are two final tests of some importance. These are as follows :

Root test. If eventually

(I cn I)1'" < r fr SOme r < 1

then Z cb converges absolutely. If there are infinitely many n such that

(| c |)1/n > R for some R > 1

then Z cn diverges.

Ratio test. If there is an r < 1 such that eventually

< r < 1

then Z cb converges absolutely. If

> R > 1 for infinitely many n

then Z c diverges.

These are both derived by comparison with the geometric series. We leave

it to the student to derive these tests (Problem 13). Let us here indicate why

the convergence assertions are true. Suppose (| c |)1/n < r < 1, for n large

enough (say n > N). Then \cH\ < r" eventually, so the partial sums Z kl

are bounded by

Z Kl + 7
n
= 0 t

1

by comparison with the geometric series. As for the ratio test, suppose

< r for n > N
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Then we have

kjy+il <r\cN\

|Cjv+2l<r|cN+1|<r2|cN|

\cN+3\<r3\cN\

\cN+k\ < r"\cN\

by induction. Thus, Tj=0 Id < Z"=o k.1 + \cM\ Z rk < oo since r < 1.

EXERCISES

11. Which of the following series converge?

(a) 2sin(i).

(b) 2sin(i).

(0 2^(1).

(e)
v

ns + 8

^4n6 + n*'

(f)
v

n3 + n2 + n+l
^

n* + n5 + n6 + 7

(g) 2--
^2"

(d) 2 tenf-) - sin(^ . (h) 27^r,x,,,x>0.
n) \n} (2n)\

(i) 2
'

x"' k a positive integer, 0 < x < 1 .

n*

(j) 2(-D"sini. (m) z(L +^ + -LJ\.
n \n2 (n+1)2 (+2)2/

(k) (-l>-
"

(n) 2(- ^-7 + -Ul
n + 1 \ n + 1 n + 2/

(1) 2(-i)n -

^

(+l)2

12. Verify directly that lim z"\n\ = 0 for every z.

13. Suppose lim c = c. Then for any integer k, lim c* = c*.
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14. Find the disk of convergence of the following power series.

00 2Z- (f) 2>!z".
=

n = 0

<b> .? - (g) 2
(2n)2

z"

(C) Jo^- (h) 2d+n)z".

n\

(d) .S,^ 2 z"

(e)

PROBLEMS

00 / z \"

?o(2nj- (j> 2(1+*)"

12. Let {c} be a sequence of complex numbers, and let R be the radius

of convergence of the power series 2 ft*"- Show that 2 ft*" converges

absolutely for |z| < R, 2 ftz" diverges for |z| > R.

13. Derive the convergence and divergence assertions of the root and

ratio tests.

2.4 Convergence in R"

The notion of convergence of a sequence of vectors is easy to conceive,

since a vector in R" is just an n-tuple of real numbers. Thus, a sequence of

vectors is an n-tuple of real sequences, and the question of convergence of

the vector sequence is just that of the simultaneous convergence of those n

real sequences. We might also directly paraphrase Definition 2 of conver

gence, using the notion of distance in R" discussed in Chapter 1. These two

possible notions are in fact the same.

Definition 5. Let {yk} be a sequence of vectors in R". The sequence

converges if there is a vector v e R" such that to every positive number > 0

there corresponds an integer K such that || yk
- v|| < e for k > K. We write

lim yk = v if {yk} converges to v.

ft-* oo
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Thus, lim yk
= v means precisely that lim || yk

- v || = 0 ; that is, the distance

between the general term yk and v tends to zero as k becomes infinite. When

put this way it sounds like just the notion we have in mind. Recalling that

in Section 2.1 we said that a complex sequence {ck} converges to c precisely

when \ck - c\ -> 0, we see that this coincides with the above definition when

n = 2. Now, if we write out the sequence yk of vectors in R" as an n-tuple

yk
= (vk\...,vk-) (2.8)

we can view the given sequence as the n real sequences {vkJ}, where

;' = 1, . . .
,
n. We now verify the fact mentioned above, that yk -> v precisely

when vkJ -> vJ for all j. Notice that Proposition 2 is that fact in the case

ofR2.

Proposition 9. The sequence (2.8) converges to the vector v = (v1, ...,v")

if and only if lim vkJ = v] for allj.
k-* oo

Proof. If w = (w1, . . .
, vc") is a vector in R", then by definition

I|W||=(2(H'')2)1'2

Then, in particular

|ftJ-tfJl<l|v*-v|| j = \,...,n (2.9)

Suppose now that v -> v. Then, given e > 0, there is a K such that ||v* v || < e

for k 5: K. Thus, by Equation (2.9) for each j, \vkJ - vJ\ < e for k ^ K. But this

means precisely that lim vkJ = v1.
k->oo

Conversely, if vkJ -+vJ for ally, then (vkJ v')2 ->0 for ally, so [2 OV 02]"2 =

llv* v ||-^-0 as k -*oo. But then, by Definition 5, v*-^v.

In precisely the same way we can verify that if the sequence of vectors (2.8)
satisfies a Cauchy criterion so do each of the real sequences {vkJ}, and thus

are convergent. Hence, by Proposition 9 the sequence of vectors {yk} also

converges, so we have a Cauchy criterion for vector sequences also. This

fact, as well as some basic algebraic properties of convergence of vectors is

easily verifiable. Accordingly, we make these assertions, leaving the proofs
to the reader.

Proposition 10. (Cauchy Criterion) Let {yk} be a sequence of vectors in R".

Suppose to every e > 0 there corresponds a K such that \\ vr vs || < whenever

both r,s>K. Then the sequence {yk} is convergent.
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Proposition 11. Suppose lim yk
=

y, lim wk
=

w, lim ck
=

c, where {vj,
{wj are sequences of vectors in R", and {Ck} is a sequence of real numbers.

Then

(i) lim(vfc + yyk) = v + w,

(ii) lim<vt,wfc> = <v, w>,

(iii) lim ckyk cv.

Example

30. Let us find a point of a given plane in R3 which is closest to

the origin. A plane is given by the equation <x, a> = c for fixed

a, c. Let m =g.l.b. {||x||; <x, a> = c). Choose a sequence {x}
on the plane such that ||x|| ->m. We shall show that {x} actually

converges. Now,

||x - xj|2 = ||x||2 + ||xj|2 - 2 <x, xm> (2.10)

We can estimate the last term by using the fact that the midpoint

i(x + xm) between x and xm must also be on the given plane.

2(xb +0 +^^ + ^ <x , xm>
4 4 2

Thus,

-2<x,xm>< ||x||2+ ||xj|2-4m2 (2.11)

Combining (2.10) and (2.11), we find that

l|x - xm||2 < 2(||x||2 + ||xj|2 - 2m2) (2.12)

Now, since ||x|| ->m, if > 0 is given, there is an n0 such that for

n,m>n0, we have ||x|| < m + s, ||xj| <m + e. Inequality (2.12)

then gives

||x - xj|2 < 2((m + )2 + (m + b)2 - 2m2) < 4ms + 2e2 = fi(4w + 2e)

This can be made as small as we please by choosing e small. Thus if

n,m are large enough, ||x-xj| is small, so the sequence {x} is

Cauchy, and thus convergent. Ifx = lim x,then ||x|| = lim||x|| = m,

so x is the closest point on the plane to the origin.
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Let us pause for a moment to consider the reasons, as illustrated by the

above example, for studying the convergence of vectors. The central prob
lem of calculus is to find an object, usually considered as a point in a given
collection of points, which has certain specified properties (i.e., the maximum

of a given function, or a zero of a function). At least, the theoretical aspect

of the problem is to prove the existence of a point with such and such

properties. Our technique for doing this is to use the desired properties to

develop a sequence of approximations; our hope is that the approximations
will converge; and that the limit will have the desired properties. It is thus

essential to be able to discuss the question of convergence without already

knowing the limit. Hence, for example, we have- the Cauchy criterion.

Further, we will need techniques, or criteria, to apply to the given properties
in order to be able to extract the desired Cauchy sequence of approximation.
For example, we will want to know : (a) If we have a convergent sequence

of points having a property, does the limit have that property ? (b) If we

have a sequence of points having a property, does the sequence converge?

or, at least does it have a convergent subsequence? These questions lead

us to the reconsideration of the closed sets introduced in Section 1.11.

Recall that a closed set in R" is a set whose complement is open. More

precisely, S is closed if and only if corresponding to every v $ S, there is an

> 0 such that any vector within e of v is also not in S. In particular, if S

is a closed set, and v ^ S, then v cannot be the limit of a sequence of vectors

in S. To put it positively, a closed set contains the limits of all convergent

sequences it contains. This is in fact a defining criterion for closedness:

Proposition 12. Let S be a set in R". The following assertions are

equivalent:

(i) S is closed.

(ii) If {yk} is a convergent sequence contained in S, then lim yk e S.

Proof. Suppose S is closed. Let {yk} be a sequence contained in S and suppose
it converges to v. If v $ S, since S is closed, there is an e > 0 such that no vector

in S gets within e of v. This is nonsense since v is the limit of a sequence in S.

Thus, we must have v e S.

Suppose now S is not closed. Then there is a v S such that for every e >0

there is a vector in S which is within e of v. in particular, for each n, taking
e = l//j there is a v such that ||v -

v|| <, l/ and v e S. Thus, v ->v so (ii) does
not hold for S.

We are now in a position to state our last basic consequence of the funda

mental existence axiom for the real number system. This is that every
bounded sequence in R" has a convergent subsequence. It is easy to derive
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this from the Cauchy criterion, itself an assertion of existence. Let us

illustrate the situation in R2 . Suppose {ck} is a sequence of complex numbers

which is bounded ; that is, it remains in some fixed square S0 of side length K.

Cut that square into four equal squares. At least one of these new squares

has infinitely many of the {ck} ; let St be one such square. Cut St into four

equal pieces and let S2 be one of these new squares which has infinitely many
of the {ck} ; now do the same with S2 and so on (see Figure 2.4). In this

way we obtain a sequence of squares {S} with the properties:

(i) Sm=>S+u

(ii) side length ofS is K/2n,

(iii) S has infinitely many of the {ck}.

Now that this is done, we can, for each integer n, select a k(n) such that

ck(n)eS, and {ckW} forms a subsequence of {ck}. (For this we need to

know that S contains infinitely many {ck}, so that we can choose k(n) greater

than any previously chosen index.) Now, {ct(B)} is a Cauchy sequence.

For let e > 0, and choose N so that > Kyj2/2N. Then, if n, m > N, we

have cm,cHm)eSN, so

IC*(b) C*(Bl)l <
(K\2 (K\2 Kj2
\2NJ \2N)

~

2N
<

Since the sequence {ct(B)} is a Cauchy sequence, by Proposition 10 it con

verges, and the argument for R2 is concluded. This is the basic idea of the

verification of

Figure 2.4
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Theorem 2.4. Every sequence in a closed and bounded set S in R" has a

subsequence which converges to apoint ofS.

Proof. Suppose that S is closed and bounded and {yk} is a sequence in S. We

shall find a Cauchy subsequence. Since the sequence is bounded, it is contained in

some ball B(0, R). This ball can be covered by finitely many balls of radius 1.

Since the {yk} are infinite, there is one such ball which contains infinitely many. Call

it Bi, and let ykil) e Bi. Bi can be covered by finitely many balls of radius i. Let

B2 be one such which contains infinitely many of the {vj and let v*(2) e B2 with

k(2) > k(l).

Continuing in this way we obtain a sequence {B} of balls, a subsequence {vt<)} of

{yk} such that (i) B has radius 1/n, (ii) vJ(n) e B, (iii) B => B+i. Then {vMn)} is a

Cauchy sequence, for if n, m> N, yk{n) and vt(m) e BN which has radius 1/N, so

2

\\ykw vt(m)||< for all n, m >N
N

By Proposition 10 there is a v such that vt() - v as n -^ oo. Since S is a closed set,

and {v*()} 6 S, we also have v e S, so the theorem is proven.

Example

31. The unit sphere S = {xeRn: \\x\\ = 1} is closed. For if

x -> x, then certainly ||x|| -> ||x||, so ifx e S, so is x. Now suppose

T is a linear transformation of R" to R". We want to know if there

is an xeS at which ||rx|| is a maximum. First of all, the set of

numbers of the form ||7x|| with x e S is bounded. Let A = (a/) be

the matrix representing T, and M = max \a/\. Then

Tx = T(x\ . . .
, x") = (Z a/xJ, . . .

, Z af-x*)

so

II Tx|| = [(Z *yV)2 + + (Z flyV)2]1'2 (2.13)

< \nM2 \\x\2 + + nM2 ||x||2]1/2 < nM ||x||

Thus, nM is the desired bound. By the least upper bound axiom then,
m = sup{||7x|| : xeS} exists, and there is a sequence {x} c S such

that ||7x|| ->w. According to the above theorem there is a sub

sequence {y} which converges, say to y. Since ||7x|| ->w, we also

have ||7y|| ->m, and by (2.13), in fact ||7y|| = lim||Ty|| = m.
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PROBLEMS

14. Prove Proposition 10.

15. Prove Proposition 11.

16. Let n be a plane in R3, and suppose x0 is the point on n which is
closest to the origin. Show that if x e Tl, then x0 is orthogonal to x -

x0 .

(Hint : If not, then one of x x0 ,
x + x0 is closer to the origin than x0.)

17. Find the point on the plane given by the equation <x, (1, 1, 1)> = 3

which is closest to the origin.
18. Find the point on the plane <x, (1,0, 1)>=2 which is closest to

-0, 1, 1).

19. Let L be a linear function from R" to Rm Show that the kernel and

range of L are both closed.

20. Let L: RP-+ R be a linear function. Show that if lim x = x, then

also lim L(x) =L(x).
21. Let v0 be a vector in R", and n the set of x such that <x, v0> = c.

Show that IT is closed.

22. Show that for any v0 e R" and r > 0,

{vefl": ||v-v0||<r}

is closed.

23. Show that yk -> v in R" if and only if

max \vk v'\ ->0
lslsn

2.5 Continuity

We turn now to the consideration of functions from subsets of R" to Rm.

The basic notion of analysis being that of convergence, the fundamental

class of functions will consist of those which respect convergence ; that is,

those which take convergent sequences into convergent sequences. These

are continuous functions.

Definition 6. Let S be a set in R", and /a function defined on S, taking
values in Rm. /is continuous on S ifwhenever yk -> v with vk e S, all k,veS,

then/(v,)-/(v).

We shall be concerned most usually with the local study of a function near

a given point. For this purpose we make this additional definition.
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Definition 7. A function / from a set in R", taking values in Rm, will be

said to be continuous at v0 e R" if /is defined in a neighborhood of v0 and

v->v0 implies /(v) ->/(v0).

Examples

32. f:R"-*R,f(y)= \\y\\ is continuous. For if v->-v, then

||v
- v|| -+0 so that ||v|| -> ||v|| since

| ||v||-||v|| |<||v-v||

33. f:C-*C, f(z) = z is continuous: z^z implies |z-z|

= |z
- z| -> 0, so that also z -> z.

34. A linear function on R" is continuous. Let

i=l

Then, if yk -? v we have V -> u1, . . .
, vk" -> v", so that Z?=ia' -"

Z"= i ;f
'
since the limit of a sum is the sum of the limits. Thus,

/(VftWW-

Roughly, the idea of continuity of a function /is this: as a moving point

p gets close to p0 ,
the value /(p) off at p gets close to/(p0). That is, we can

ensure that /(p) is as close as we please to /(p0) by choosing p sufficiently

close to p0 . This leads to the so-called
"

s - 8
"

criterion for continuity,

which we now give.

Proposition 13. Let S be a subset ofR", and letf be an Rm valuedfunction

defined on S.

(i) Let x0 e X. f is continuous at x0 if and only if, to every e > 0, there

corresponds a5>0 such that \\x
-

x0 1| < 8 implies ||/(x) -/(x0) || < .

(ii) If S is open, f is continuous on S if and only iff is continuous at every

point of S.

Proof, (i) Supposing first that the e S criterion is true, we shall show that /

is continuous at x0 . Let x -> x0 . We have to show /(x) -*/(x0). Given e > 0,

there is a 8 > 0 such that whenever x is within 8 of x0 we have ||/(x) /(x0)|| < e.

Since x-*x0, there is an N such that n>N implies ||x x0|| <8. Thus, for

n ^ N, ||/(x) /(xo)|| < e, as desired.
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Conversely, if the e - 8 criterion is false, then there is an e0 such that for every
8 > 0 there is an xd for which ||x -

x II < 8 but ||/(x) -

/(x0) || > e0 . Selecting

8 1
! l 1

2 3 n

we obtain the corresponding sequence Xi, Xi/2, ..., Xi,, which converges to x0.

But/(xi/n)+>/(x0) since the/(xi/n) are always outside the ball of radius e0 centered

at x0.

Part (ii) is left as an exercise.

Examples

35. /: R2 -+ R defined by

/(*>') =
FT?

is continuous at (0, 0). For

5x

1 + y2
<5|x|<5||(x,^)||

Thus, if is given we can choose <5 = e/5. Then ||(x, y) \\ < 8 implies

5x

1 + v2

36.

f(x, y, z) =

< 58 =

y3z

1 + x2 + z2

is continuous at (0, 0, 0). We have

|/(x, y, z)
- f(0, 0, 0)| =

y3z

1 + x2 + z2
< \y3z\ < \\(x, y, z)

Thus for each > 0 choose 8 = e4 = e. Then ||(x, y, z)\\<8 implies

|/(x, y, z)\ <84 = e.
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37.

/(*>y) = (4^4- (x,y)*(0,0) /(0,0) = 0

This function is not continuous, since

4x2

f(x,x) =2 = 2^0

If we redefine /(0, 0) = 2, this new function is still not continuous,

since

/(0,y) = ^=1^2
38. We can easily verify the continuity of the linear function (2.14)

by the s 8 criterion. For

l/(v) -/(w) | = | Z (' ~w')\< ||(a\ . . .
, a") || || v - w||

by Schwarz's inequality. Thus, if > 0 is given, we can take

8 = IKa1, ...,a") ||
"

h. Then || v -

v0 1| < 8 implies |/(v) -/(v0)| < .

The facts concerning convergence discussed in previous sections have

application to the study of continuity, as might be expected. In particular,
the assertion that every sequence in a closed bounded set has a convergent

subsequence has profound significance for the behavior of continuous func

tions. Here is an important illustration.

Proposition 14. (Intermediate Value Theorem) Let f be a continuous

function on the interval {x e R: a < x < b}, and suppose thatf(a) < y <f(b).
Then there is a c in the interval such thatf(c) = y.

Proof. We seek (as in Figure 2.5) not just a point at which the value of /is y,

but more precisely the first such point c. We must find a way to describe this

point which permits us to use the existence theorem. If x < c we must have

f(x) < y, otherwise the graph of /crosses the line y = y between a and c. Thus, c

is a lower bound for the set of x such that f(x) > y. Since c is in that set, itmust

be the greatest such lower bound. So if there exists a first c at which /(c) = y, it is

the greatest lower bound of {x e R : a <, x <, b, f(x) ^ y}. We now show that this

point (which exists by the least upper bound property) is the desired c.
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Let c = g.l.b.{x :a<x<b, f(x) > y}. Then c is a limit of a sequence {*} in this
set. Since y </(*) we must also have y < lim/( jc) =/(c) since /is continuous.

Now, if /(c) # y, we must have f(c) > y. Again, by continuity, there is a 8 such

that if \x c\ < 8, then

l/W-/(c)|<^^

from which it follows that for all x between c and c 8, f(x) > y. Thus,

f(c 8) > y, contradicting the definition of c as a lower bound for the set of x

with/(x) > y. Hence /(c) > y is impossible, so we must have /(c) = y.

Now, the most important fact about continuous real-valued functions is

that they are bounded on closed and bounded sets. This follows easily
from Theorem 2.4. If, say, / is continuous and not bounded above on the

set S, then, for every positive integer n, there is an x e S such that/(x) > n.

If S is closed and bounded, {x} has a convergent sequence {x(t)}. Let

lim xn{k)
=

x0 . Since / is continuous, /(x0) = lim/(xw) > lim n(k). But

fc-*00 fc->00

n(k) -> oo as k -* oo, so this is impossible. Thus/is bounded on S. What is

more it attains its least upper bound. For if m is this least upper bound,

but is not a value of/ then g(x) = (/(x) m)'1 is an unbounded function

on S, again a contradiction. To conclude: if/ is a continuous real-valued

function on a closed and bounded set S in i?", then there are xux2e S

such that

/(x1) = sup{/(x):xeS}

/(x2) = inf{/(x):x6S}

Figure 2.5
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Here are the proofs in a slightly more general context.

Theorem 2.5. Let f be a continuous Rm-valued function on the closed and

bounded set S in R". Then the set ofvalues offon S,

f(S) = {f(x):xeS}

is closed and bounded.

Proof. First, f(S) is closed. Suppose ye/(S) and y^yeRm. We must

show that y ef(S). But this is easy. Since y ef(S), there is for each n,xeS

such that /(x) = y . Since S is closed and bounded there is a subsequence {zk} of

{*} which converges, zk^-zeS. Since/ is continuous, f(zk) ->/(z). On the other

hand, [f(zk)} is a subsequence of {y}, so f(zk) -> y. Thus /(z) = lim/(z4) = y and

ye/(S).
If f(S) is not bounded, there is for each n an x e S such that ||/(x) || ^ n. But

{x} has a convergent subsequence {z}. Let lim zk
= z. Then lim/(zt) =/(z).

But {f(zk)} is a subsequence of {/(x)}, so ||/(zt)ll -+ o, which is impossible since

{/(z*)} is convergent. Thus, /(S) must be bounded.

In particular, suppose /is a real-valued function defined on the closed and

bounded set S. Then/(S) is bounded, so M= sup{f: tef(S)} exists, and

since /(S) is closed, M e/(S). Thus there is an xt e S such that

/(Xl) = sup{/(x):xS}

Similarly, there is an x2 such that/(x2) = inf{/(x) : x e S}. This basic fact

we state as

Theorem 2.6. A continuous function attains its maximum and minimum

on a closed bounded set.

PROBLEMS

24. Let x0 e Rn. Show that/(x) = <x, x0> is continuous on R".

25. Show that a linear function L : R" -* Rm is continuous.

26. Prove part (ii) of Proposition 13.

27. Show that if / is a continuous real-valued function on a closed and

bounded set S, there is an x2 such that/(x2) = g.l.b.{/(x): x e S}.

28. Suppose that /, g are J?m-valued functions continuous at p0 6 R".

Show that /+ g and </, gy are also continuous at p0 . If c e R, then also

cf is continuous at p0 .
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2.6 Calculus of One Variable

Theorem 2.6, which asserts that a continuous function attains its maximum
and minimum on a closed and bounded set, is the fundamental theoretical

tool of the calculus. We shall now give a brief review of the fundamentals

of calculus, leaving the recollection of techniques to the student's memory.
We shall give brief justifications of some of the more basic or special facts.
First of all, we studied in the calculus a limit concept which was more

general than the sequential limit we have been studying. We recall the

definition.

Definition 8. Suppose / is a real-valued function defined in a set

{x:0 <\x -

x0\ <80}

We say lim f(x) = L if and only if, for all > 0, there is <5 > 0 such that

\x - x0\ <8 implies \f(x) - L\ < e.

First of all, the relationship between the two concepts of limit is an easy

one: lim/(x) = L if and only if for every sequence x converging to x0 ,
we

x-*xo

have lim/(x) = L. We can thus rephrase the notion of continuity using
B~*00

Definition 8. /is continuous at x0 if and only if lim/(x) =f(x0).
x-*xo

Proposition 15.

(i) Suppose f is defined in I = {x: 0 < | x x0 \ <8}. Then lim/(x) = L

x-*xq

if and only if, for every sequence {xn} in I such that x -* x0 we have

limf(x) = L

(ii) /// is also defined at x0,f is continuous at x0 if and only if

\imf(x) =f(x0)
X-*Xo

Proof. We will prove only (i). The proof of (ii) is the same and is left as a

problem. Suppose first that \im f(x)=L. Let {*} be a sequence such that

X-*XQ

x-+x0. Given e > 0, there is a 8 > 0 such that \f(x)
- L\ < e for any x such

that |jc-x0|<8. Now since x-*x0, there is an N such that for n>N,

\x -

x0 \< 8. Thus if n > N, \f(x) -L\<e. Thus, f(xn) ^L.
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Now suppose lim/(x) =L is false. Then there is an e0 such that for every 8

x-*xo

we can find anx such that |x,-x0| <8but \f(x)-L\ ^e. Consider the sequence

{c} of x's for 8 = 1, J, ... , 1/n, .... Then |c
- xl < l/, so certainly c ->x0 .

But/(c) is always outside the interval ofwidth e and center L, so it cannot converge

toL.

Definition 9. Let /be a real-valued function defined in an interval about

x0 e R. /is differentiable at x0 if the limit

lim/(X + " /(Xo)

r->0 f

exists. If it does the limit is called the derivative of/at x0 and is denoted

en ^
^ / ^

/ C*o) 01"

~
(*o)

If/is differentiable in an interval J and the derivative/' is also differentiable

there, then / is said to be twice differentiable on / and (/')' is the second

derivative off and is denoted by

/" or

dx2

The higher derivatives/'", . . . ,/(n), ... are defined successively in the obvious

manner. A function which has derivatives of all orders on the interval will

be said to be infinitely differentiable there. If/ g are n-times differentiable

on I, so are/+ g,fg, and cfTor c a real number. If/ is differentiable in an

interval I it is continuous there. If/ is differentiable at a point x0 where it

attains a local maximum (or minimum), then f'(x0) = 0. This, together
with Theorem 2.6 gives this basic existence theorem.

Theorem 2.7. (Mean Value Theorem) Let f be differentiable on the closed

interval [a, b~]. There is a point t; e (a, b) such that

mJ{b)-f(a) (215)
b a

Proof. This theorem has a nice geometric interpretation (Figure 2.6). There is a

point (|, /(f)) on the graph y =f(x) at which the tangent line is parallel to the line

through (a, f(a)) and (b, f(b)). Clearly (see Problem 30), we need only verify this

when the latter line is horizontal, that is, f(b) =f(a). In this case, let f0 e [a, b],
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Figure 2.6

fi e [a, b] be the points at which / attains its maximum and minimum respectively

on the interval (Figure 2.7). If either f0 or f i is interior, then/has a local maximum

there, so /'(f) = 0 for the appropriate f. If this is false, then {f0 , f1} are the points

{a, b), so/(a) =f(b) is at once the maximum and minimum of/. Thus, /is constant

on [a, b], so /' is identically zero and we can choose any point for our f .

Now suppose that / is a differentiable function defined on the interval

[a, b], and g is a function defined on the range of/ and differentiable there.

Then the composed function h = g f, defined by

h(x)=g(f(x))

is also differentiable on a, b. For if x0 e \a, b], then

h(x)-h(x0) g(f(x))-g(f(x0)) f(x)-f(x0)

X ~ ~ Xn f(x)-f(x0)
(2.16)

(W(*,.))

:2_
(.))

Figure 2.7
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Taking the limit on both sides, we have (since x->x0 implies /(x) ->f(x0)),

Hm
h(x)-h(x0)

= Hm
g(f(x))-g(f(x0))

Hm
f(x)-f(x0)

x->x0 X X0 f(x)->f(xo) f(x)
~ f(x0) x-+x0

X X0

The limits on the right exist since/is differentiable at x0 ,
and g is differentiable

at/(x0), so the limit on the left exists. Thus h is differentiable and we obtain

the chain rule:

h'(x0) = (g of)'(x0) = g'(f(x0))f'(x0)

(Notice that if/(x) =f(x0), then (2.16) is invalid and the proof breaks down.

However, that case can be treated separately.)
If /is a function from the interval [a, b] to the interval [a, j8] and there

exists a function g: [a, /?] -> [a, b~] such that

g f(x) = x for all x e [a, b]

fg(y) = y for all y e [a, 0]

we say that/is invertible and g is its inverse. The mean value theorem gives
us a condition under which a differentiable function is invertible. If a

function /has an inverse, it must be one-to-one. From (2.14) we see that

this will be guaranteed if/' is never zero. This is the sufficient condition

for the invertibility of/

Theorem 2.8. Suppose thatf is a continuously differentiable function defined
on the interval [a, b], andfi is never zero. Letf(a) = a andf(b) = p\ There

is a continuously differentiable function g defined on the interval between

a and ft such that

3(f(x)) = x and g'(f(x)) = - for all x
f(x)

Proof, f is one-to-one. For if a < ai < bi ^ b, there is, by the mean value

theorem a f between ai and bi such that

f(bi)-f(ai)=f'()(bi-ai)*0

by hypothesis. Thus f(bi) ^/(ai). By the intermediate value theorem every v

between a and j8 is attained by /. Now we can define g as follows : let g(y) be that
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x such that f(x)=y. Clearly, g(f(x)) = x and f(g(y))=y. Now g is differ

entiable:

.. g(y)-g(yo) .. x-x0 l 1
hm = lim - = hm
-ro y-yo n-yo f(x) - f(x0) x-.xo [f(x) - f(Xo)]lx -

X0 f'(x0)

A further fundamental fact to be drawn from the mean value theorem is

this: A function is determined, up to a constant, by its derivative.

Theorem 2.9. Suppose that f, g are differentiable on the interval [a, b]
and that f'(x) = g'(x) for all x e [a, b]. Then there is a constant C such that

f(x)=g(x) + C

Proof. Let h=/ g. By hypothesis h'(x) = 0 for all x e [a, b]. By the mean

value theorem, for any c e [a, b], there is a f ,
a < f < c such that

=

h(c)
- h(a)

But '(f) = 0, so h(c) = h(a). This for all c e [a, b], so is constant and thus /

differs from g by a constant, as desired.

Now, given any real-valued function / defined on interval J, we consider

those differentiable functions F defined on I such that F' =/. By Theorem

2.9, any two such functions differ by a constant; thus by specifying the value

of such an/at any point it is completely determined. We denote by Jj /=

F(x) that function (if it exists) such that F(a) = 0 and F'(x) =f(x) for

all x e fa, b]. j* /is called the indefinite integral of/. Every continuous

function has an indefinite integral, which is given by the process of Riemann

integration which we now describe.

Let /be a bounded function defined on the interval J. A partition P of I

consists of an increasing sequence of points a0 < ay < < a such that

/ = [a0 , a]. We now construct two sums, corresponding to the approxi

mations to the area under the graph offgiven in Figure 2.8 :

S(P,/)= J>(fl|-f-i)

a(P,f)= Zwi(fli-ai-i)
i=l
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Figure 2.8

where Mt,mf are the maximum and minimum values off on the interval

[fl,-!, a,].

Definition 10. Let / be a bounded real-valued function defined on the

interval. / is Riemann integrable if

infE(P,/) = suPff(F,/)
p p

(2.17)

(i.e., if we can find partitions for which the two sums 2 and o are as close as

we please). In this case the commonvalue is called the definite integralof/over

the interval /, and denoted j"7/.

If/ g are integrable on the interval J, then so is/+ g and cf, ceR. Further

liW+9) = lif+li9> \icf=c\if- If/is integrable on the interval J,

then/is integrable on every interval J c I. If/ is integrable on the intervals

[a, i] and [b, c] with a <b < c, then/is integrable on [a, c] and

f /= f /+ f /
he c] '[a, 6] J[b, c]

Furthermore, if f>g and both functions are integrable, then J//^J/^.
Finally, if/is integrable on [a, b], then

F(x) = f /
Jin vi

is a continuous function of x.
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The fundamental theorem of calculus says more: if/ is continuous on

[a, b], then j [a,6]/= \baf; that is, the definite and the indefinite integrals of

/ coincide. The proof of this is actually quite easy to describe. Define

these functions on the interval [a, b], corresponding to the two sides of

Equation (2.17);

F(x) = inf{KP, /) : P a partition of [a, x] }.

F(x) = sup{(j(P,/) : P a partition of [a, *]}

To prove that/is Riemann integrable on [a, U] is to prove F(b) = F(b). We

show, using Theorem 2.9, that in factF(x) = F(x) for all x e [a, b~\.
First of all F is differentiable in [a, b~\. Let x e [a, ft] and h > 0, then

F(x + n) < F(x) + Mh (2.18)

F(x + h) > F(x) + mh (2.19)

where M, m are the maximum and minimum of/ in the interval [x, x + ].
These inequalities can be routinely verified (see Problem 32); Figure 2.9 is

convincing: F(x + h) is just F(x) plus the infimum of all 2 (P,f) over parti
tions of [x, x + h]. Any such sum lies between Mh and mh. Now

Equations (2.18) and (2.19) give

J(x + h) - F(x)
^

m <
;

< M
n

r

* x + h

Figure 2.9
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Letting h -* 0, since / is continuous, M and m both tend to f(x). Thus

F'(x) exists and is/(x). Similarly, one verifies that F'(x) also exists for all x

and has the same value. Thus, F and F differ by a constant. Since

F(a) = F(a) = 0 is obvious, we have that F(x) = F(x) for all x. Thus

J [a>x]/is defined for all x, is differentiable and has derivative/. This, then,

is the proof of

Theorem 2.10. (Fundamental Theorem of Calculus) Suppose f is contin

uous on the interval [_a, b}. Then the integral J*/ exists for all x e [a, b].
This is a differentiable function off, and

d r*

-r\f = f(x)
dx Ja

PROBLEMS

29. Prove Proposition 15(ii).

30. In the text the mean value theorem is proven in the case where

f(p) =f(a). The way to do the general case is to compare the graph of/

with the line through f(b) and f(a). More precisely, let g be the function

whose graph is that line, and consider h=/ g.

(a) Show that

h(x) =/(*) -f(a) -f(bl
~f(a)

(x
- a) (2.20)

b a

(b) Show that h(a) = h(b) = 0.

(c) Now from the text there is a f between a and b such that h'(0 = 0.

Differentiating (2.20), deduce that

m=m-m

31. Suppose that /is differentiable on the interval [a, b], and/'(x)>0
for all x. Show that /is strictly increasing, that is, f(x) </(y) if x <y.

32. Verify inequalities (2.18) and (2.19).

33. Give an example of a continuous function of a real variable which is

not differentiable. Give an example of an integrable function which is not

continuous.

34. Find the real-valued function /, continuous on the interval [0, 1]
such that

f f(t ) dt = j f(t) dt for all x e [0, 1 ]
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35. Suppose /is k times differentiable on R, and fw(x) =0 for all x.

Verify that /is a polynomial of degree at most k 1.

2.7 Multiple Integration

The calculus of many variables results from the attempt to study functions

of several variable quantities by generalizing to that context the calculus of a

single variable. Some notions generalize easily, others require some ideas

of linear algebra to be properly understood. The integration theory is much

closer to that of one variable than is differentiation, hence we shall describe

it first.

A closed rectangle in R" is a set of the form

{(x1,...,xn)eR":ai<xi<bi} = l(a1,...,d>>,(b1,...,b't)-\

for some fixed points a = (a1, ...,an), b = (b1, ...,bn) in Rn. As in the

case of intervals, we denote the corresponding open and half-open rectangles

in the same way:

(a,V) = {xeRn:ai<xi<bi}
lsL,b) = {xeRn:ai<xi<bi}
(*,K] = {xeR":ai<xi<bi}

The term rectangle will refer to any of these possibilities. The volume of

the rectangle R determined by the vectors a and b is

Vol(K) = (b1 -a1) (b"-dr)

Notice that the volume of R is the same whether R is closed, open or half-

open. Of course, this is as it should be since
the faces contribute no volume.

Now let S be any set. The characteristic function of S, denoted by Xs

is the function which is one on S and identically zero off S. We should want

to define integral so that the volume of S
coincides with the integral of Xs-

In particular, for a rectangle R we shall have J Xr = Vol(R). The notion

of integral will be built up piece by piece so that things turn out that way.

Now suppose that /is a finite linear combination of characteristic
functions

of rectangles: /= Z/=i *(*) Such a function is called simPle/u"ctl0,n:
It is constant on each of some finite collection

of rectangles, and identically

zero off their union.
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Definition 11. Let/be a simple function. If/= Z*=i ailRi-> we define

[/= Z^Vol(R;) (2.21)
>

;=i

We immediately have a problem. It may be possible to also write the

same function in another way, / = Zy= i c,- Xsj fr some other collection

of rectangles. For Definition 1 1 to make sense, we must be assured that the

sum Zy=i cj Vol(Sj) coincides with (2.21). In case the at and c; are all one

and the {Rt} and {Sj} are nonoverlapping (intersect only in faces), this

amounts to the assertion that the volume of a set is the sum of the volumes

of its rectangular pieces, no matter how it is so partitioned. The verification

that (2.21) is the same for all expressions of the function /as a combination

of characteristic functions is a long verification which is omitted. We now

make this general definition of the integral.

Definition 12. Let/be a bounded real-valued function which is identically
zero outside some rectangle R. The upper integral off is

J /= inf{| o: a a simple function on R such that a >/}

The lower integral off is

j /= sup{| a: a a simple function on R such that a </}

/is integrable if

j /= j /; the common value is the integral f/

This is the direct generalization of the definition of the Riemann integral
given in Section 2.6. On the plane and in space it bears the same relation

to area and volume as does the Riemann integral to length.

Definition 13. Let S be a set in R". If Xs is integrable, we define the

volume of S to be

Vol(S)=J**s
Now there are sets for which /s is not integrable; these are highly patho

logical and shall not occur in this text. Notice that if Ru ...,Rn are non-

overlapping rectangles contained in the set S, then the sum of the volumes
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Z Vol (Rt) = J (Z Xr) is less than J Xs , since /s > Z X*, Thus the volume

of S is greater than the sum of the volumes of any collection of nonover-

lapping rectangles contained in S. Similarly, if now Ru . . .
, Rn are non-

overlapping rectangles containing S, J *s < Z Vol(i?;). Thus, the volume of

S is trapped between the volume of any union of rectangles containing S and

the volume of any union of rectangles contained in S. If we can make these

two volumes as close as we please by proper choices of the rectangles, then

J Xs is integrable (for then J Xs
= ]Xs), and its integral is the volume of S.

Theorem 2.11. Let R be a closed rectangle in R". Iff is continuous on R

and zero offR, thenf is integrable.

Proof. Given e > 0, we must find simple functions a, r such that a>/> t and

J <j < J t + e Vol(.R); for then it will follow that

f/< f <j < (" t + e Vol(7?) < f/+ e Vol(R)

for any >0. Thus, lf<~lf. In any case, since the inequality, J/<J/is

obvious, /is integrable.

Such functions a, t are easily found using the basic property of uniform con

tinuity (discussed in miscellaneous Problem 80). According to that theorem, given

>0, there is a 8>0 such that, if |x-y|<8 then |/(x) -/(y)| < e. Now

partition R into a finite set S of rectangles each of which has the property that any

two points are within 8 of each other. Thus, if for each such rectangle p, mp ,
and

M are respectively the maximum and minimum of/on p, wemust haveM m<e.

Let

a = 2 MPXe T=2mX<>0
peS pes

where p0 is the open rectangle corresponding to p. Then a>/> t certainly, and

L = 2 Mp Vol(p) < 2 (rne+ e) Vol(/>)
J peS peS

< ft + e 2 Vol(p) <{t+e Vol(R)
J peS

J

since S is a partition of R into rectangles.

These following basic properties of the integral are easily derived.
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Proposition 16. The collection of integrable functions is a vector space and

the integral is a linearfunction. That is:

(i) Iff is integrable and c e R, then cfis integrable and \cf=c J/.

(ii) Iff, g are integrable, so isf+g and \(f+g) = J/+ J g-

(iii) Furthermore, iff< g then [f<\g.

Proof. We leave the proof of (i) to the reader, (ii) is certainly true for simple

functions. For if /=2'Xi> 0
= 2*jXs,> where R,, Sj are rectangles, then

f+g=2a>Xi + 2ZbJXsj is also simple, and thus integrable. By Definition 1,

|(/+ 9) = 2 ", Vol(R,) + 2 bj Vol(Sj) = J>+ \g

More generally, now let /, g be any integrable functions. If > 0, there are

simple functions cti, a2, ru t2, such that

CTi>/^(72 ti;>0>t2

and

J <^i <, I (T2 + J Ti <, J T2 +

Thus

CTl + Ti >/+ g > a2 + T2

so

{ (f+g) < ji + jri <|((72 + t2) + 2e ^ J(/+^) + 2e

Since e > 0 was arbitrary, we obtain J (/+ g) <, J (/+ g), so /+ # is integrable.

Finally,

j(f+g)^jcr2 + jr2 + 2e<jf+jg+2e

so letting e->-0,
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Similarly,

j(f+g) + 2e>jai + jr2>jf+jg

so again letting e ->0,

j(f+g)>jf+jg

(iii) Finally iff<g, thengf>0. But certainly the functionwhich is identically
zero is a simple function. Thus J (g -/) > J (# -/) > 0. By (ii) it follows that

Sg-Sf^0,or!g>jf.

We shall now give the basic tool for computing integrals: Fubini's theorem.

According to that result we can integrate by integrating one variable at a

time. For the purpose of showing this, write the variable (x1, ...,x") of

R" as (x, y) where x e R"'1 and y e R: x = (x1, ..., x"'1), y = x". Let /
be a function defined on a rectangle R in R", and suppose for each y fixed,

f(x, y) is an integrable function of x. Define F(y) = J/(x, y) dx. If F

is an integrable function of y, its integral

JF(y)dy = j\jf(x,y)dx dy

is called the iterated integral off. We shall now show that iff is integrable
this is the same as J/ More generally (after applying this principle n times)
if all functions appearing in the following formula are integrable, then the

formula is valid.

jfix1 x") dx1 dx"

= J J"'" jf(x1,...,xm)dxl

This follows from Fubini's theorem.

dx2 dx" (2.22)

Theorem 2.12. Letf be an integrable function on a rectangle R in R". We

refer to the coordinates ofR" as (x, y), where xeRk,ye R"~k

(i) These functions ofy, |/(x, y) dx, |/(x, y) dx are integrable.

(ii) These functions ofx, j/(x, y) dy, |/(x, y) dy are integrable.
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(iii) If is given by any iterated integral off; for example,

J7(x, y) dx dy = j \]f(x, y) dx] dy = j \jf(x, y) dy dx

Proof. It is easily verified that the collection of functions for which the asser

tions (i), (ii), and (iii) are true is a vector space. Furthermore, these assertions are

obvious for the characteristic function of a rectangle. Thus, Fubini's theorem

holds for simple functions.

Now, suppose /is a bounded, real-valued function on the given rectangle R, and

suppose that or is a simple function, and /> a. By definition of the lower integral

with respect to the x coordinate,

jf(x,y)dx>jo(x,y)dx

Now this inequality is maintained after taking the lower integrals with respect to y,

thus

J" J*/(x,y)rfxpy>j[ja(x,y)rfx dy = j o(x, y) dx dy (2.23)

since Theorem 2.12 is true for simple functions. Equation (2.23) being true for

any o <;/, we can take the least upper bound on the right, obtaining

j jf(x,y)dx dy> \f(x,y)dxdy

Now, by considering simple functions a such that o >:f and applying the same

kind of reasoning we obtain this inequality

j J7(x,y)rfx dy^jf(x,y)dxdy

As a result, we obtain this string of inequalities, which is valid for any bounded,

real-valued function on R:

KlM
V

J'l
W\fU> (2.24)

(The second and third inequalities follow immediately from the fact that the upper

integral always dominates the lower integral.) Now, if /is indeed integrable, the
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first and last terms of (2.24) are the same, so all are the same. That the second and

top third are equal implies that J /(x, y) dx is integrable. That the bottom third

and fourth are equal says that J/(x, y) dx is integrable. The equation

jf(x,y)dxdy = j jf(x,y)dx dy

now just states the equality of the end terms with the interior terms.

Now we shall illustrate the use of Fubini's theorem. Before doing that,
we should remark that we rarely have the occasion to integrate functions

defined on a rectangle; more often such a function is defined or considered

only on a given measurable domain D. We make the following definition.

Definition 14. Let D be a domain contained in a rectangle R. Given a

function / defined on D, we say /is integrable if this is so for the function/
defined on R by

/(*)
=/(x)
= 0

xe D

xeR,x$ D

We define JD/=J/
If D is a subdomain of a rectangle R bounded by a surface which is the

graph of a function, or has some other redeeming property, then the function

/ will be integrable if / is. We shall not pursue this theoretical inquiry,

but rather tacitly assume our domains are redeemable.

Example

39. {D = (x, y): 0 < y < x2, 0<x<l}, f(x, y) = x2 + y2.

Define f(x, y) = x2 + y2 if (x, y) e D, and f(x, y) = 0 otherwise.

Then

\j-\j- uj>-Hjx-n.c"<x2+/)* dx

since, for fixed x, f(x, y) is zero if x < 0 or y > x2 and otherwise is

We thus obtainx2 + y2

It-? x2y + y-^
r1/ a x6\ J

1 1

dx=L\x +yr*=5+2T=
26

105
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y
= g(x)

Figure 2.10

Let us do the same example, iterating this time in the other order.

J7 = f_ t [f_ /(x, y) dx\ dy = j^ [f_(x2 + y2) dx\ dy

_

1 1 2 2
_

26
~

3
+

3

~~

15
~

7

~~

Ibl

The general technique can be described as follows : Try to write the domain

in either of these forms (Figure 2.10).

D = {(*, y) : a < x < b, g(x) < y <f(x)}

or (Figure 2.11)

D = {(x, y):a<y^b, <b(y) <x< xjj(y)}

Then, given the function/defined on D, we can write

r rbf rg<-x>

f=\ f(x,y)dy dx

in the first case; and in the second

C rf c*W

j/ = j J f(x,y)dx dy
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Of course, if neither case can be obtained, then D might have to be broken

up into pieces in each of which either representation is possible. The

computation of integrals in more than two dimensions is done in pretty much
the same way, but with a certain amount of additional care. For example,
one should try to pick out one of the coordinates, say z, so that the given
domain takes the form g(y) < x </(y), where y represents all the other

coordinates and ranges through some domain D0 . Now one proceeds to

break down D0 in the same way.

Examples

40. D={(x,y, z): x2 + y2 + z2 < 1, x > 0, y > 0, z > 0},

f(x, y, z) = xyz.

Now z ranges between 0 and (1 (x2 + y2))1'2, so

D = {(x, y, z): x2 + y2 < 1, 0 < x, 0 < y, 0 < z < [1 - (x2 + y2)]1/2}

Thus, continuing the analysis of

A> = {(x, y): x2 + y2 < 1, 0 < x, 0 < y}

D = {(x, y, z): 0 < x < 1, 0 < y < (1 - x2)1/2,
0 < z < [1

- (x2 + y2)]1/2}

p

x
= Hy)J

\ J

x = <l>(y)

a L,y1

Figure 2.11
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and

. .1 r.(i-xJ)'/2

f= x\ y
J
D J0 \_J0

"

.[l-(x2+y2)ll/2

z dz
So

dy

1 .1 V Jl-X2)'/2

=

2J/[Jo y(l-(x2 + y2))rfy dx

1 firx(l-x-2)2

2 J0 L 2

(1 -

x2)2]
X

4 J
dx

1

~24

dx

41. D= {(x, y, z): x2 + y2 + z2 < 1, (x - i)2 + y2 < i

x > 0 ^^0 z > 0} f(x, y, z) = 1

(see Figure 2.12). We may rewrite this domain as

D = {(x,y, z):(x-i)2 + y2<i,x>0,y> 0,

0 < z < [1 - (x2 + y2)]1/2}

= {(x, y, z): 0 < x < 1, 0 < y < [i - (x - iff12,

0 < z < [1 - (x2 + y2)]1/2}

Thus

ri r r[i(x-i)2]'/2 Jl-(x7 + y2)11/2

dx
L^o

rfy az

Figure 2.12
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Integration is clearly of value in computing volumes; it also plays a role

in the study of mass. Suppose is a domain in R3 filled with a certain fluid.

If D is any subdomain in E, we shall let (>) be the mass of the fluid contained
in D. What information do we need in order to compute mass (D), and how

do we compute it ? The answer is suggested by comparison of the properties
ofmass with those of volume. In fact, it is clear that the intuitive properties
of mass are the same as the properties of volume ; so we should also expect
to be able to compute masses by integration. In fact, we introduce the

notion of density: for x0 e E, the density o(x0) of the fluid at x0 is the limit

mass(i?)

r Vol(R)

where we mean by R -> x0 ,
that x0 is in the rectangle R, and the lengths of

the sides of R tend to zero (we might call mass (R)/'Vo\ (R) the relative

density of the fluid in the rectangle R). Now, the mass of the fluid in any

domain is computable in terms of this density function a. Suppose D is

such a domain and {R J is a collection of pairwise disjoint rectangles in D

and almost filling D. Then

is an approximation to mass (D) and as the size of the rectangles gets smaller

and smaller, the approximation gets better. On the other hand, this sum is

the integral of a simple function approximating a, and thus approximates

JB a. Taking the limit we obtain mass (>) = JD a.

EXERCISES

15. Compute the volume of these domains:

(a) {(x,y)eR2:x2 + y2<\).

(b) {(x,y)eR2:x2<y<\}.

(c) {(x,y, z)eR3:0<x<l,0<y<l,0<z<x2 + y2}.

(d) {(x, y, z)eR3: -1 <x < 1, 0 <y<2, y<z< y + x2}.

16. Verify that the volume of a right circular cylinder of radius r and

height h is inr2h.

17. Integrate the function/on the unit rectangle [(0, 0), (1, 1)] in R2

(a) f(x, y) = x cos 2-ny.

(b) f(x,y)=\(x-\)(y-\)\.

(c) f(x, y)=xe*y + ye~x.
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,a\ tt ^
x tfx^y

(a) f(x, y)= .c
.

i \ n \ fx + y if x + v < 1

(e) f(x,y)=
j ifx + y>l.

(f) f(x,y) = (i+x2 + y2Y'2.

18. Integrate the function /on the domain D in R2.

(a) 7J = {(x, y):0<x,0<y,x + y< l},f(x, y)=x2 + y2.

(b) D = {(*, y): 0 < y <x < l},f(x, y) = xy2

(c) D = {(x, y):0<y<x< \},f(x, y)=x2y.

(d) D = {(x, y): x2 + y2 < l},/(x, y) = (x2
- y2)2.

19. Integrate the function /on the domain D in .R3.

(a) D is the intersection of the unit ball with the octant {x > 0, y > 0,

z > 0} and f(x, y, z) = x + v + z.

(b) Z> is as above and f(x, y, z) = xyz.

(c) Z> is the unit cube in the first octant and/(x, v, z)=x2 + y2 + z2.

(A) D is the domain in the first octant bounded by the coordinate

axes and the plane x + y + z = \ and f(x, y, z) = z.

PROBLEMS

36. Verify that the integral on R" as defined in this section coincides,

when n = 1, with the Riemann integral defined in the previous section.

37. Let /be a bounded, nonnegative, real-valued function defined on the

interval /, and let D = {(x,y) e R2; x el, 0 < v </(*)}. Verify this

assertion: /is integrable if and only if D is measurable, and U f= Vol(Z>).

38. Use Problem 37 to verify this. Let D be a domain in R2 and suppose

that D is of the form

{(x, y)eR2:a<x<b,g(x)^y <f(x)}

Then, if D is measurable, Vol (D) = JS [f(x)
-

g(x)] dx.

39. Complete the proof of Fubini's theorem by verifying the second and

third inequalities of Equation (2.24).

40. State and prove Fubini's theorem in three dimensions.

41 . Suppose the unit ball is filled with a fluid whose density is proportional
to the distance to the boundary. Find the radius of the ball centered at

the origin which has precisely half the mass.

42. Suppose a cone of base radius r and height h is filled with mud

(Figure 2.13). Suppose the density of the mud is equal to the distance from

the base. What is the mass of the mud?

43. A beach B is shaped in the form of a crescent (see Figure 2.14)

B = {(x,y): 1 <x2 + y2;(x- i)2 + v2<l}

and the human density a increases with the distance from the water. More

precisely, a(x, y) = (x2 + v2)"1. What is the mass of humanity on that

beach ?
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Figure 2.13

Figure 2.14

2.8 Partial Differentiation

Although the integral in R" is defined without reference to the coordinates,
it is computed by a succession of integrations, one coordinate at a time. The

notion of differentiation is, to begin with, generalized to R" one coordinate

at a time. Later we shall see how to build out of this generalization an

invariant notion of derivation.

Let x0 e R", and suppose that / is a real-valued function defined in a

neighborhood of x0 . For each i consider the function of the single variable

x' given by

J (X0 ,
. . .

,
X

, x0 )
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If this function is differentiable, we denote the derivative by df/dx1, and call

it the partial derivative of/in the x' direction. More precisely,

Definition 15. Let /be a real-valued function defined in a neighborhood

of x0 in R". The partial derivative of/ with respect to x! at x0 is the limit

df , v ,. /(V xp' + f, ,x0")-/(xo1, ...,Xo")
i (x0)

= hm
OX (-.0 *

Another way of describing the partial derivative is this. Consider the

function / only as a function on the line through x0 and in the E; direction.

This restriction is a function of one variable and df/dx' is its derivative.

These partial derivatives are computed merely by considering all but the

relevant variable as constant.

Examples

42.

fix, y) = xy

f(x,y)dx

=

y (x, y) = x

dy

43.

1

= 2xy f (x2y) = x2
dy

44.

/(*, y) = cos[x(l + y)]

f(x,y)= -(l + y)sin[x(l + y)]
dx

(x, y) = -x sin[x(l + y)]
dy

45.

/(*, y) = x>
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x~(x, y) = yxy
'

(x, y) = x In x

dx dy

Of course, if the functions

dx1'"" dx"

are also defined in a neighborhood of x0 ,
we may subject them to further

partial differentiation, and keep going in this way as far as possible. We shall

refer to any such operation as a partial differentiation and call its order the

number of individual partial derivatives involved.

Thus, the order of

dx' \dxJJ

is 2; the order of

dx2 \dy \dz3JJ

is 6. We introduce a notational convention which deletes parentheses.

dx2 dx \dxj

d2f
_

d /df\

dx dy dx \dyj

*2

dx

l2f
_

d ldf\
1
dxj dx1 \dxJj

d3f ((K\\
dx' \dxJ \dxkjfdx1 dxj dxk

d6f d / d5f

dx2 dy dz
3

dx \dx dy dz3)

and so forth.
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Suppose now that /is a function defined in an open set N in R" and that

df/dx1, ..., df/dx" all exist in N. If we set all the variables constant except

one, say x'
,
then df/dx' is just the derivative off along this line. Thus, if

df/dx' = 0, / is constant along the line on which only x' varies. In such

circumstances we say that /is independent of x', since /does not vary as x'

alone varies. If, moreover, df/dx' is zero at all points of N for all i, then/

depends on none of the variables, so is constant. As this is an important

observation, we make it.

Proposition 17. Suppose thatf is a real-valued function defined in a neigh
borhood of x0 in R". f is constant near x0 if and only if all the derivatives

df/dx1, . ..
, df/dx" exist and are zero near x0 .

Proof. If/is constant, it is obvious that df/dx' = 0 for all i. On the other hand,

suppose that these conditions are valid in a ball B(x0 , r) centered at x0 . Let

y
= (y1, ...,y")e B(x0 , r). We will show that/(>0 =/(x0). Figure 2.15 illustrates

the proof. Consider the function of x" :

f(x0 ,
. . .

, Xo-1, x")

This function has derivative zero by hypothesis, so is constant. Thus,

/(xo1, . . .
, XV1, xo") =f(xo' xl~\ y")

Now, the function of xn_x,

f(x0\...,x"0-2,x-\y)

(y'.y2,/)

(xn\xir, Jfi>:! ) / (y',-to2,jto

Figure 2.15
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also has derivative zero, and thus must be constant, so

f(x0\ ..., xTl, v") =f(x0\ ...,y-\ y")

This together with the preceding equation gives

f(x0\ , xTl, x0") =f(x0\ ..., xl'1, y-\ y")

Continuing in this way, we can replace each x0J by the corresponding y] one at a

time, ending up with the desired equation f(x0) f(y).

As far as the higher order differentiations are concerned, there is one basic

fact we should now verify. This is that each partial differentiation depends

only on the number of derivatives with respect to each coordinate, and not

on the order in which they are performed. For example,

*' ^
(2.25)

dx dy dy dx

d5f d5f d5f

dx dy dz dz dx dy dx dz dy dx dz dz dx

We shall verify only the first equation; it being clear that all others follow

from a succession of applications of the first one. The verification of (2.25)

amounts to an interesting application of Fubini's theorem.

Theorem 2.13. Let f be a real-valued function defined in a neighborhood

N of(x0 , y0) in R2 and suppose that all first- and second-order partial deriva

tives off exist and are continuous on N. Then

d2f d2f

dx dy dy dx

throughout N.

Proof. We apply Fubini's theorem to d2f/dx 8y in a sufficiently small rectangle

R = ((xa , yo), (s, t)) contained in N (see Figure 2.16)

rs IY e2/ l r' [V e2/
dy (2.26)
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Figure 2.16

Now, we can easily evaluate the integral on the right-hand side. For fixed y,

rs 82f f 8 l8f \ df df

Jxo dx dy Jxo 8x\8y J dy dy

Integrating once again (this time with respect to y) we obtain from Equations (2.26)

and (2.27)

J*o L-'vo

ay

dx dy
dy

c' 8

dx = j -[f(s,y)-f(x0,y)]dy

=f(s, 0 -f(x0 , t) - [f(s, y0) -f(x0 , y0)] (2.28)

Now, we can differentiate this equation with respect to 5 first, and then t. By the

fundamental theorem of calculus, we know how to differentiate the integral on the

left with respect to the upper limit of integration :

d

8s

'

d2f

L- 8x8y
(x, y) dy dx -i.

'

82f

8x 8y
(s, y) dy

Then, from (2.28)

f' a2/

axey(''y)dy
=

ax(s't)-8x<s'y)
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Differentiating this equation now with respect to t
, we obtain

82f 82f

dx 8y

as desired.

8y 8x

Another important application of Fubini's theorem is this result, which

allows us to differentiate under the integral sign.

Proposition 18. Suppose that f is a continuously differentiable function of

two variables x and y, a < x < b, and y e D, a domain in R". Define the

function F on the interval [fl, b~\ by

F(x)= |7(x,y)dy

Then F is differentiable and

d-f(x) = j8/(x,y)drdx Jd dx

Proof. We shall show that F is the indefinite integral of the function

8f.f J

\yx(x,y)dy

and thus by the fundamental theorem of calculus, the proposition follows. By

Fubini's theorem

i[ll^y)dy\dx=l[V^{x'y)dx dy

But by the fundamental theorem of calculus, the inner integral on the right is

f(t,y)-f(a,y). Thus

f'Tf ^(x,y)df\dx=\ [f(t,y)-f(a,y)]dy=F(t)-F(a)
J LJD 8x J JD

Let us return now to the consideration of the first-order derivatives.
These

are obtained by differentiating after restricting the function to lines parallel
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to the coordinate axes. We generalize this notion to allow differentiation

along any line. That is, we make this definition.

Definition 16. Let x0 e R" and suppose /is a real-valued function defined

in a neighborhood of x0 . If v is a vector in R", we define the directional

derivative df(x0 , v) to be

jff(*o
+ 'v)

This is clearly the same as

Um/(x0 + fv) - /(x0)

i-o t

We leave it as an exercise to verify that

g(x0) = d/(x0,Ej) (2.29)

Now, in certain pathological cases the directional derivatives need not hang

together in any nice way, but typically we need only know the partial deri

vatives in order to find any directional derivative.

Proposition 19. Supposef is defined in a neighborhood ofx0 and the partial
derivatives df/dx1, ... , df/dx" all exist near x0 . Then the directional derivatives

df(x0, y) vary linearly in v.

Proof. The argument consists in looking at the difference

/(x0 + fv)-/(x0)

one variable at a time. In order to expose the idea without encumbering the

argument with a pile of indices, we consider the two-variable case. Write the

difference

f(x0 + th, y0 + tk) f(x0 , y0)

{f(x0 + th, y0 + tk) -f(x0 + th, y0)} + {f(x0 + th, y0) -f(x0 , y)}
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We can find a better expression for the term in the second set of braces by applying
the mean value theorem to the function f(s, y0) of s. That is, there is a f0 between

x0 and x0 + th such that

8f
f(x0 + th, y0)

- f(x0 , y0) = (fo , yo)th

Similarly, by applying the mean value theorem to the function f(x0 + th, s), we can

rewrite the term in the first set of braces as

8f
(x0 + th, t]a)tk

8y

for some -q0 between y0 and y0 + tk. Thus, we have for suitable (f0 , v) in the

rectangle [(x0 , yo), (x0 + th, y0 + tk)],

f(x0 + ty)-f(x0) df .,8f, , ,.
v.

= (fo , yo)h + (x0 + th, r)0)k
t dx oy

Letting t --0, we obtain by continuity that

d((x0 , y0), (h, k)) =j
(*o , y0)h + (x0 , y0)k (2.30)

Thus the proposition is verified, at least in R2.

This linear function, df(x0 , v) of the vector v in R" is called the differential

of/ at x0 . We will make a systematic study of this in a later chapter. The

vector-valued function

IK. K\
\dxl'""dx")

is called the gradient off and is denoted by V/ It is clear from Proposition

19 that the generalization of (2.30) to n variables is

df(*o ,v) =etW = <. V/(x0)> t2-31)

The gradient behaves as a sort of
"

total derivative." It is not as powerful

in the analysis of a function as the derivative in one variable and it is some

what more cumbersome, but it does provide a similar kind of tool. For

example,
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Proposition 20. The gradient of a function vanishes at any point at which it

attains a maximum or minimum value.

Proof. If x0 = (xo1, . . .
, x0") is (for instance) a maximum value of /, then

f(x0l, . . .
, x', . . .

, x0"), as a function of x', attains a maximum at x0'. Thus,

8f/8x' vanishes at x0'. Since this is true for all i, Vf(x0) = 0.

Examples

46. Consider /(x, y, z) = x2 + xy + y2.

V/=(2x + y,x + 2y)

Thus V/is zero when

x =
-

-

x = 2y
2

that is, only at the origin. This is the only critical point, and a

minimum at that.

47. f(x, y, z) = x cos y + z

V/= (cos y, x sin y, 1)

is never zero, so /has no critical values.

48. f(x, y,z) = x cos (yz)

V/= (cos(yz), xz sin yz, xy sin yz)

V/is zero onlywhen x = Oandyz = n(n + ^foranyintegern. Clearly,

/ has both negative and positive values near any point on the line

{x = 0}, so no such point is critical. Thus, /has no critical points.

EXERCISES

20. Find the first partial derivatives of these functions.

(a) xyz (b) sin(xy) (c) x'' (d) x2y + y2x
21. Differentiate x*". (Hint: This is the same as finding the directional

derivative of x"z at a point (x, x, x) in the direction of (1, 1, 1).)
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22. If /is differentiable at x0, then

8f
,- (x0)

= df(x0 , Ei)

for all i.

23. Suppose that/, g are differentiable at x0 in R". Show that fg is also

differentiable and V(fg)(x0) =f(x0)Vg(x0) + g(x0)Vf(x0).
24. If /is differentiable at x0, and/(x0) ^0, then

v(i)(x0) =^ V/(x0)

25. What is the minimum of x2 + y2 + (2v + l)2 ?

26. What is the maximum of

x+3v
n

l+x2+y2'

27. Compute the differentials of the functions in Exercise 20.

PROBLEMS

44. Suppose /is a differentiable function of two variables and gi,g2 are

differentiable functions of one variable so that the range of (gi,g2) is in the

domain of/. Find the derivative of h(t ) =f(gi(t), g2(t)).
45. Let /be a differentiable function of two variables. Show that /is a

function of x y alone if and only if 8f/8x + 8f/8y = 0.

46. Suppose that L : R" -> R is a linear function. What is V/_ ?

47. Let T: R" -> R" be a linear transformation. Define the function on

R" x R": f(x, y) = (Tx, y>. Show that / is differentiable, and V/(x, y) =

<T'y, Tx} (recall that T' is the transpose of T: if T is represented by the

matrix (a/), then T' is represented by (b/) where b/ = at').

48. If T: R"-+R" is a linear transformation, then the function g(x) =

<7x, x> is differentiable, and V#(x) = Tx + Tx.

2.9 Improper Integrals

We return now to the study of functions of one variable; in fact, we will

be considering functions defined on the whole real line. Our interest will

focus on the
"

behavior at infinity
"

of such functions. For this purpose we

introduce the notion of lim/(x) as x -* oo.
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Definition 17. If/ is a real-valued function defined in an infinite interval

{x: x > fl} we say that f(x) converges to L as x becomes infinite, written

lim/(x) = L if, for every e > 0 there is an M > 0 such that x> M implies
x-*oo

|/(x) L| < . Similarly, if/ is defined in {x: x<b] we say lim/(x) = L

x-*<x>

(the limit of f(x) is L as x becomes negatively infinite) if, for every > 0

there is an M > 0 such that x < M implies \f(x) L\ < e.

Examples

49. lim 1/x = 0. For given > 0, we can take M = _1. Then

x > M implies |l/x - 0| < .

50.

,.
4x2 + 3x + 5 1

lim
2

- =
-

jc-+qo ox 7 2

For, so long as x > 0,

4x2 + 3x + 5 4 + 3/x + 5/x2

8x2 - 7

~

8 - 7/x2
(2.32)

Now, we can compute the desired limit by using the standard algebraic
rules (the limit of a sum is the sum of the limits, etc.). (See Exercise

28.) Since 1/x, 1/x2 tend to zero as x->oo, the limit of (2.32) as

x-> oo is 4/8 = 1/2.

51.

,.
x\x\ x\x\

hm 5=1 I'm 2= 1

x-*co 1 T X X-* oo t + X

If

x|x| X2 1

'

Y+x1
=

TTx1
=

l + i/x2

if

x < 0,
x|x| x2 -1

1 + x2 1 + x2 1 + 1/x2
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52. lim arctan x = n/2.

Definition 17 is the analog for functions defined on an infinite interval

of the notion of convergence of a sequence (a function defined on the integers).
lust as we pass from sequences to series we can pass from infinite limits of

functions to infinite sums; that is, integrals over infinite intervals.

Definition 18. Let/be a continuous function on the interval {x: x > a}.

We say / is integrable if lim \xaf exists, in which case we write the limit as

J?/ /is absolutely integrable if lim \xa \f\ exists.

Examples

53. x-2 is integrable on the interval [1, oo). For

Ji

dx = x
1

= --+1
i m

so

Cx~2dx= lim (--+1^1 = 1

Jl m-oo\ m )

54. x~y cos x is not absolutely integrable on the interval [1, oo).

For

OO -2HB + JI/3 QQg x

dx > Z I
Jl X b=1 J2nn-n/

dx

3 X

Between 2;tn - jt/3 and 2rcn + n/3, x
1
cos x > (2nn + n/3)

1

\.

Thus,

fJi
cos X 1

dx> Z o^i 2 (27tn + tt/3) 3

2n
= oo

The theory of integration on infinite intervals is entirely analogous to the

theory of infinite series. We have the following facts (whose counterparts

in the theory of series are easily recognized).
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Proposition 21. Letf be continuous on the interval {x : x > a}.

(i) fis absolutely integrable if and only if the set {\xa |/|} is bounded.

(ii) Iff is absolutely integrable, then fis integrable.

(iii) (Comparison Test). // there exists a b > a and a constant K and an

integrable positive function g defined on {x: x> b} such that Kg > |/|, thenf

is absolutely integrable.

Proof.

(i) If |/| is integrable, clearly {Jj |/|} is bounded. On the other hand, if {J; |/|}
is bounded, let L = supfjs |/|}. Then for e > 0, L

-

e is not an upper bound, so

there exists an x0 such that S |/| >L -

e. Then for all x>.x0,

L>: j l/l>| !/!>-

so

-flfl\ <B

(ii) Suppose j? |/| = L. Let c = rS/. We show that {c} is a Cauchy sequence.

Let e > 0. Then there is an x0 such that for x ;> x0 ,

f l/l-

Then for n, m >: x0 ,

<-

|c-cm| = f fzf l/l^ f l/l- f l/l
-

n a a

f \f\-L + j |/|-. <

Thus {c} is Cauchy, so converges, say to c. We shall show that in fact J/= c.

Let e > 0, and find N so that |c c| < e/2 for n^>N. Then for x > max(x0 , N),

as in the previous computation.
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(iii) Under the given hypothesis, if x > 1, then

x b co

j l/I^J" 1/1+ AT J g<oo
e a b

Thus by (i), /is absolutely integrable.

Here is an easily derived relationship between the absolute convergence of

series and integrals which provides yet another test for the convergence of

series.

Proposition 22. (Integral Test) Let f be a positive, decreasing function

defined on R
+

. Then Jj f exists if and only ifY.n=if(n) < -

Proof. For x,n<x<n+l we have f(n)>x>n+ 1. Thus/()>|i;+1 />
f(n +1). Thus, by comparison the series 2 j+1 fand 2/(") converge or diverge
together. But the convergence of the first series is the same as the existence of

J /, and conversely.
This proposition gives an easy proof that 2 l/<1+e) < < for e > 0. (Compare

to the work of Example 18.) For if we consider the integral j? dtjt1*', we have

r* dt -1
x

1 1 1

i
~ ex' e

as x ->-ao.

Example

55.

OO 1

?2 n(log n)2
< 00

For

dt /'e* du

J
2 f(l0g f)2 'log 2

Thus

dt

f"*-* au _,
= -"

No* 2

log I 1 1

,og2 log 2 logx

r dt
_

/ i M=_L
h f(logf)2 *-\log2 logx/ log:

< oo
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EXERCISES

28. Verify these algebraic properties of lim. Suppose lim/(x), lim g(x)
X-.00 JC-.00 X-.00

exist.

(a) lim f(x) + g(x) = lim f(x) + lim g(x).
x-*o x-*oo x-*co

(b) lim f(x)g(x) = lim f(x) lim g(x).
x-*co x-*ao x-*<x>

f(x) Jim-^
(c) lim -

= *? if lim #(x) ?t 0.
-. #(x) hm^tx) x-.co

x-oo

29. Compute these limits as x -> oo.

(a) sin x 1
. (d) tan-.

x x

x2 + 3x + 1 1

** + l
(C) XSinx-

x2-l

(c)
FT!"

30. Which of these series converge:

(a) 2 -j (f) 2 -J7T
n=2 nlogn n=2 n3'2

" 1 f IV

(>) 1 ^r-^i Cg) 2
* '

n(logn)2 n=2(logn)2

CO 1 OO 1

W 2^r-T W Z
n = 2 (10g lOg ri)2 n = 2 (log rt)

oo 1 oo 1

(d> 2 n__. x2 2

,2

ii = 2 (log n)2(log log n)2 n = 2 ( sin n)2
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2.10 The Space of Continuous Functions

The mathematician attacks his problems with a certain store of techniques.

Occasionally a problem will require the development of a new technique;

more often the problem is solved by viewing it in one way, and then another

and then again another until a viewpoint is obtained which allows for the

application of one of those techniques. Sometimes if the viewpoint is clever

enough, or profound enough or naive enough the applicable technique

is quite elementary and surprising and leads to further deep discoveries.

This is the case with the contraction lemma (a fixed point theorem) which we

shall apply several times in this text to obtain some of the basic facts of

calculus. First, in this section, we shall develop the particular viewpoint in

the relevant context. It is simple enough instead of looking at continuous

functions one at a time, we consider them all.

Let us illustrate this with a particular problem. Suppose we are interested

in finding a differentiable function with these properties:

f'(x)=f(x) for all x and /(0) = 1 (2.33)

To find such a function means first of all to verify that a solution to our

problem exists, and secondly to establish some technique for computing it.

We already have enough experience with calculus to know that this second

objective will be hard to fulfill. What we in fact seek is a means of effectively

approximating our solution . This provides a clue : let us look for a sequence

of functions {/} which converges to a function with the properties (2.33).

Such a sequence would be a sequence of differentiable function {/} such

that the sequence {fn(x)} converges for all x, and f'n(x) =f-i(x). If we

had such a sequence, we could take the
limit and deduce that

lim/'n(x) = lim/n_1(x)

so/(x) = lim/(x) will solve our problem.

Now this is a good idea, because Equation (2.33) itself provides the tech

nique for generating such a sequence. Let /0 be any function, and define

/,=/' Then let/2=A,/3=A, and so forth. Will the sequence

{/} converge? Well, that is a problem. Notice that /2 7 i -/ o.

/3=/'2=/"o, and more generally / =/<5n)- Thus, we must be very

careful to choose an infinitely differentiable function for/0. Suppose f0 is

chosen as a polynomial of degree n. Then / + 1 =/o"+1 = 0, and so all

the rest of our functions are zero. Thus, the sequence certainly converges,
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but hardly to a solution, since the condition /(0) = 1 is not verified. In fact,

this present approach has obviously petered out fruitlessly and it may be

because we have not incorporated the initial condition /(0) = 1 in our

approach. Can we put all of (2.33) in one statement, and then proceed

with this technique of generating an approximating sequence ? The funda

mental theorem of calculus says yes; in fact, (2.33) can be rewritten as

f(x)=ff(t)dt + l (2.34)
'o

This now is an operation involving integration rather than differentiation,
and so we have the added advantage of not having to choose a very well-

behaved function for the first approximant. Let us try again, with (2.34)
rather than (2.33). Letting/, = 1, we find

/i(x) = f 1 dt + 1 = x + 1

"o

2

f2(x) = f (f + 1) dt + 1 = + x + 1

Jo 2

/3(x)=/o(y + '+1)d'+1=^+5+x + 1

/b(x)=/o7-i(o^+i=5+(-^ + ---+^+-+i
(2.35)

Now we're getting somewhere. We have already seen that the series (2.35)

converges for any x. Thus, letting

/(x) = lim/(x)= -.
= 0n!

this must be the sought after function. (Of course the reader has long since

recognized the solution of our problem as being the exponential function.

Thus he should be reassured to see that it did in fact turn out that way.)
What we need now is the theoretical mathematics that will allow us to take

the limit in (2.35) and correctly deduce

r* Xn

/(x) = J/(f)d-f+l= Z-f
Jo B=on!
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Thus we are led to the question of convergence in the space of continuous

functions. We now proceed to that theory.

Let X be a closed bounded set in R", and let C(X) denote the space of all

continuous complex-valued functions on X. We know that iff and g are two

functions in C(X), then so are/+ g ana\fg and cf, for c, a complex number.

In particular, C(X) is a vector space on which multiplication is defined.

The vector space C(X) is quite different from the vector spaces C", R" : C(X)
is usually infinite dimensional (see Problem 49). C(X) does not have any

obvious "standard basis" in fact, we wouldn't know how to choose one.

In other particulars, however, C(X) is not very different. There is in this

space a reasonable notion of closeness. Two functions are close if their

values are everywhere close ; that is, if the maximum of their difference is

small. This leads to a notion of length and distance in C(X).

Definition 19. Let X be a closed and bounded set in jR", and C(X) the

space of continuous functions on X. If/e C(X), the length of/is

H/ll =max{|/(x)|:xeX}

If/ g are in C(X), the distance between/and g is \\f-g\\.

The properties of length and distance are just those of the corresponding

notions in R" :

\\cf\\ = \c\ H/ll

ll/+<7ll< 11/11 + 11*11

If ll/n =0, then /=0. What is important is what we can consider the

notion of convergence of a sequence of continuous functions.
We say that

/n ->/if ll/n -/II -> . that is> if the distance between the general term of the

sequence and / becomes arbitrarily small. This is the same as saying that

the values of/n at points ofX converge to the values of/in a uniform manner.

The value of these notions lies not only in their naturality, but in the now

realizable possibility of finding specific functions satisfying given properties

by techniques of approximation. Let us make this precise.

Definition 20. Let X be a closed bounded set, and {/} a sequence in

C(X). We say that {/} is uniformly convergent if there is an /e C(X) such

that

lim ||/ - /|| = 0

n-* 00
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We say that the sequence is uniformly Cauchy if, for every e > 0 there is an N

such that

II/b /mil < whenever n,m> N

Examples

56. Let x be the interval [0, 1], /(x) = (1 - x)x". This sequence

converges uniformly to zero. Let us compute max|/(x)| = ||/,||.

/n'(x) = n(l-x)x"-1-x"

so/'(x) = 0 has the solutions x = 0, x = n/(n + 1). Thus

11/.
V n + l/U+1/ n + l\n + lj

which tends to zero.

57. On the same interval the sequence fn(x) = sin x/n tends to zero,

for

||/J = sin - -? 0 asn->oo

58. Consider the convergence of the sequence {nx sin x/n} on the

interval [0,1]. Now we know that sin x/n ->0 as n - oo, but

nx - oo, so we cannot make any deduction about the product.

We have to refine our information about sin x/n. For large values of

n, it is very close to x/n. Thus

nxsin nx
- = x

n n

(2.36)

so we guess that nx sin x/n -* x2. Let us prove it by computing

nx sin x

n

(2.37)

In order to do that, let us provide an estimate to our guess (2.36).

.
x x

sin

n n

< r in the interval [0, 1]
n

(2.38)
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Then (2.37) becomes

X
2

nx sin x

n

=

/ .
x x\

nxlsin 1

\ n nj
+ nx

X

n

-x2

=

I .
x x\

nx sin

\ n nj
(2.39)

< lliwll
.

X X

sm -

n n
(2.40)

1 .

< n -^
= n

n2

and since n_1 -*0 as n -> co, we are thrc)ughL.

59. On the interval [0, 1] the sequence {sin nx} is not convergent.
It is not even a Cauchy sequence. The distance ||sinnx sinmx||
does not become arbitrarily small as n, m->co. In particular, if

m = 2n, we have

||sin(nx) sin(2nx)|| > sinl n I sinf 2n |
\ 2n/ \ 2n/

= 1

The basic theorem about convergence of continuous functions is the

following, which plays the same role in C(X) as the least upper bound axiom

does for R. It provides the assertion of existence of functions with prescribed

properties. In order to verify that a sequence of functions has a continuous

limit, we need only verify that it is a uniformly Cauchy sequence.

Theorem 2.14. A uniformly Cauchy sequence of continuous functions is

uniformly convergent.

Proof. Suppose {/} is a uniformly Cauchy sequence of continuous functions

on X. This means : for every e > 0, there is an N> 0 such that 11/
-

/m 1 1 < e for

n,m~^.N. This means precisely

l/n(x)
-

fm(x) \<e for all x e X (2.41)

Thus, for each x, {/(x)} is a uniformly Cauchy sequence of real numbers, and

thus converges. Denote the limit, lim/(x) by f(x). We must show that this

function x ->/(x) is continuous, and that/ converges uniformly to/.
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First of all, if e > 0, choose N as above, and let m -> oo in (2.41). We obtain, for

n>N,

lim |/(x) -/(x)| = |/(x) -/(x)| < e for all x e X
m-* oo

Thus, if n^N, ||/-/||>e. This implies that lim ||/-/|| =0, as desired.
n- oo

Now / is continuous. Fix x0 e X. Let e > 0 and choose iV so large that

ll/ /II < e/3. Since/ is continuous, there is a S>0 such that ||x x0||<3

implies |/v(x) /(x0)| < e/3. Then if |x x0| < 8,

| f(x) -/(xo)l ^ l/(x) -/(x)| + |/(x) -/(x)| + IMx) -/(x0)|

e e e

<3+3+3=,

as desired.

Having seen one vector space of functions, we can easily see them every

where. The collection of bounded real-valued functions on a set X is a

vector space over the reals. The collection of all bounded functions on X

taking values in R" is also a vector space; similarly, the space of continuous

functions taking values in R". All the spaces here are endowed with the

same concept of length :

ll/H =sup{||/(x) ||: xeX}

Of even more interest are the spaces of functions on which is defined some

analytic operations. For example, if I is an interval, the space of all real-

valued functions which are differentiable on / is a vector space. The space

C](/) of all functions whose derivative is continuous is also a vector space,

as is the space C(n,(/) of all functions which have continuous nth derivatives.

The space R(I) of functions which are integrable on / is a vector space. These

(and other) examples are further elaborated in the exercises. Suffice it to

say here that the mathematical theory which follows this point of view

(called functional analysis) is a recent (20th-century) development which has

had profound impact, not only in foundations of mathematics, but in the

practical application of mathematics in all branches of science.

Let us return to the space C(X) of continuous functions on a closed

bounded set X in R". Once we begin thinking of these functions as points
in a space, on which are defined such notions as distance and convergence,

we are easily led to consider functions on that space. Naturally, such a

function is continuous if it takes convergent sequences into convergent

sequences.
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Examples

60. Let g e C(X) and define <b(f) =fg. $ js continuous, for if
/-/, that is, ||/-/||-*0,then

\\fng-fg\\< II/.-/H ll^n ->o

61. Define i/,: C(X) - C(X), <P(f) =f\ ,/, js also continuous, for

II/2 -/2|| = ll(/ -/)(/ +/)|| < ||/ -/||
-

||/ +/|| (2.42)

If /-?/> the term ||/ +/|| remains bounded while \\f-f\\->o
thusalso ||/2-/2||->0.

62. If P is any polynomial, \/ip(f) = P(f) is continuous on C(X)
(Problem 55).

63. Define M: C(X) -^ R, M(f) = ||/||.
This is continuous, since

\\M(f)-M(g)\\ = \ ||/||-|l*ll l<ll/-<7ll

64. Let x0 AT and define F0 : C(X) ^ R, F0(f) =f(x0). Certainly
F0 is continuous: for if/->/in C(X), then the maximum over X

f \L(x) -/W| tends to zero; in particular, |/(x0) -/(x0)| ->0, so

Fo(L) ^ F0(f).

65. The definite integral is a continuous function on C(I), where

/ = [a, b~] <= R. For

J/"-//|-|-f//n_/) <\\L-f\\(b-a)

so if/n ->/, also J//, -> \,f A stronger and more important statement

than that of Example 65 is that the indefinite integral, as a function

from C(I) to C(I) is continuous. This is contained in the next pro

position.

Proposition 23. Let I = {x e R: a < x < b}. Supposef is a sequence of

continuous functions on I converging uniformly to f. Let F(x) = J-* / ,

F(x) = jafi Then F^Funiformly.
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Proof.

I
x

F(x)-F(x)\= J (/-/) SS 11/. -/IK*
-

a) < 11/. -/IK*
-

a)

Thus, taking the maximum on the left,

l|F-F||<||/-/||(6-a)

so if/ ->/ uniformly so also F^F.

Problem 56 is intended to demonstrate that on the other hand, differentia

tion is not a continuous function on C(I). (It isn't even everywhere defined;

i.e., there are continuous functions that do not have a derivative.) Neverthe

less, Proposition 23 has this consequence for differentiation.

Proposition 24. Let {/} be a sequence of continuously differentiable

functions on the interval [a, b~] and suppose that (i) {/'} is uniformly Cauchy,

(ii) f(a) = 0 for all n. Then {/} is uniformly convergent to a differentiable

function f andf = lim/'.

Proof. The proof of this proposition consists in a rereading of Proposition 23

via the fundamental theorem of calculus. By that theorem

X

fn(x)=j /'.
a

so by Proposition 23, / is also convergent. If we let g = lim/' , then lim/, = Jj g.
Thus, lim/, is indeed differentiable and its derivative is g = lim/' .

Let us return now to the consideration of our original problem. In fact,

let us generalize it slightly. Let c be a complex number, and let us seek a

differentiable complex-valued function / such that

f'(x) = cf(x) for all x and /(0) = 1 (2.43)

This is, by the fundamental theorem of calculus the same as seeking a con

tinuous function/such that

f(x) = c\Xf(t)dt + l (2.44)
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Now that we have the necessary theory and point of view available, we may
follow a more sophisticated approach. Let I be the interval I = \_-R, R],
and define the function T on C(I):

Tf(x) = c ff(t) dt + 1 (2.45)
'o

We seek a function / such that/= Tfi that is, a fixed point of the transfor

mation. Our technique is that of successive approximation. Let /0 be any

continuous function, and define f = Tf0, f2 = Tf =T2f0, and in general

/ = Tfn_i = T"f0. We must show that the sequence {/} converges. If

we choose /0 = 1 we can compute the sequence explicitly, and we find that

(ex)" (cx)"~l

Then if m > n,

(cx)m (ex)'1 (cx)"+i
L(x)

-

f(x) =
kf + -b^-rv, +

'

+
;

ml (m-1)! (n + 1)!

On the interval [-R, R] the maximum of this expression is dominated by

replacing c by |c|, and x by R. Thus,

ii f m
(|c|Kr

i
^R)m'1

i i
(lcl*>"+1

Um All-
m,

+

(m_i)i
+ +

(n + l)!

k=o k\ k=o K\

Since the series

(f. (kl R)k

converges, its sequence of partial sums is a Cauchy sequence, so by (2.46),

{/} is a Cauchy sequence and is thus uniformly convergent. Since T is

continuous on C(I), we have

lim/, = lim T(/B_,) = Tflim/,-,) = r(lim/)
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so lim/ solves the given problem. This function is important enough for us

to spend a few more paragraphs discussing it.

Definition 21. The exponential function, denoted exp(cx), or ecx, for any

complex number c is the solution of the differential equation

/'(*) = cf(x) /(0) = 1

First of all, this definition makes sense, because there is only one solution.

If g also solves, then

d [ecx~\ cecxg ecxg' cecxg cecxg

dx 92 92
= 0

since g' = cg. Thus e^g'1 is constant. Since its value at 0 is 1, e^g'1 = 1,
or ecx = g. From these discussions we have these additional properties of

the exponential function

Proposition 25.

b = 0 n!

(ii) ex+y = eV.

(iii) ecx is never zero.

Proof. Part (i) follows directly from the argument above. Part (ii) follows

from the uniqueness. Fix v, and define h(x) = e'+yle*. Then

"'(*) ==(*) and '(0)=_=1

Thus we must have h(x) = e', so (ii) is verified. Part (iii) follows immediately
from (ii) :

^CXq-CX
_

gCX-CX
_ Q _

1

so (e")-1 =<r".

PROBLEMS

49. Let / be a nonempty interval in R. Show that C(I) is infinite

dimensional.
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50. Show that the sequence of functions on the closed unit disk in C

defined by

n
X

ux)=Lk2

converges.

51. Does the sequence | 2 Z"/M converge on the closed unit disk?

52. Let {a} be a sequence of complex numbers such that 2 M < co-

Verify these facts:

(a) For every z, |z| < l,/(z) = 2*=' az" converges, and

i/Wi < 2 ifl-i
n= 1

(b) /is continuous on {z e C: \z\ < 1}. This is true because /is the

uniform limit of the polynomials f(z)=^Liaz\ since ||/-/v||<

2i?=N+il,.l^0as/V^*>.
53. Let / g be continuous functions on the closed and bounded set X.

Show that \\fg\\ < ll/ll \\g\l Is \\fg\\ < 11/11 lltfll possible?

54. Show that on the interval [0, 1],

x x

sin
n n

< for all n
n2

55. Let xi, . . .
, xk e X and p be any polynomial in k variables. Define

r-.C(X)^C

,F(/)=K/(xi), ...,/(*))

Show that T is continuous.

56. Find a sequence {/} of differentiable funct.ons which is uniformly

convergent, but such that {/'(*)}
is not convergent.

2.11 The Fixed Point Theorem

The fixed point theorem is a generalization of the technique of successive

approximations described above
in the discussion of the exponential function

This technique was first used by Newton as a technique for finding root of

polynomial equations. Simply stated, Newton's method is this. First,



212 2. Notions of Calculus

a technique is described bymeans ofwhich one can transform a given approxi
mation to a root into a better approximation. One then chooses a reasonable

approximation, applies this technique to it to find a better one. Having

this, one again applies the technique : if it's a good one, the result is an even

better approximation. Continuing in this way, one obtains a sequence of

approximations which should converge to the root. Now, having described

the procedure, let us turn to Newton's specific technique for bettering

approximations.
Let / be a given real polynomial. We want to find a point x0 such that

f(x0) = 0. Choose a px so that/f^) is small. Now, replace the function by
its linear approximation at p1: L(x) =f(Pi) +f'(Pi)(x Pi), and let p2 be

the root of L(x) = 0. In other words, replace the graph off by its tangent

line and let p2 be the x intercept of that line (see Figure 2.17). Now apply
this procedure to p2 . Let p3 be the root of the linear approximation to /
at p2 ,

and so forth. We can describe Newton's technique abstractly as

follows : For any point p, let T(p) be the zero of the linear approximation of

/at p:T(p) solves the equation f(p) +f'(p)(T(p)
-

p) = 0. (We must

Figure 2.17
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assume that/' # 0 for T to be a well-defined function.) Clearly, iff(p) = 0,
we have T(p) = p, and conversely, thus we are in reality seeking a fixed

point of T\

Suppose T has the property of contraction on some interval I. There is a

c < 1 such that \Tx - Ty\ < c\x -

y\, all x, y e I. Then Newton's method

works. There is a root of/(x) = 0 (or/'(x) = 0) on the interval /, and it is

the limit of the sequence x0 , Tx0 , T2x0 , ..., where x0 is any point of /.

This is the content of the fixed point theorem.

We now state and prove it explicitly for subsets of C(X). It will be clear

that the theorem is true for subsets of R", by virtue of the same argument.

Theorem 2.15. Suppose S is a closed set of functions in C(X) : that

S contains all limits of sequences in S. Suppose T is a mapping of S onto S

which is a contraction, that is, there is a c < 1 such that

II T(f) - T(g) || < c ||/ - g \\ for allf, g e S

Then there is a unique continuous function f0 such that T(/0) =/0 .

Proof. Certainly the fixed point is unique. For if T(f0) =/0 and T(f) =/, then

l!/o-/ill= lir(/o)-r(/)]|<c||/o-/i||<||/o-/ill unless ||/0-/i||=0, that

is, /o =/i.

Now let fe C(X). Let the sequence {/} be defined as follows :fi=f,f2 = Tf,

f3 = Tf2,...,fn = Tfn-l. {/} is a Cauchy sequence. For

ll/.+i-/.ll = ll7y.-3/.-ill^c||/.-/.-il|

so we can verify by induction that

ll/.+i-/.ll<c"ll/i-/oll

Thus, for m > n we have

11/- -/.!!< ZUi+i-fj) <mf\\fj+l-fj\\
J=n

#)"*< \IcJ) II/1-/0IKII/1-/0I
c"

Since c < 1
, {/} is Cauchy, so has a limit f0 e C(X). Since T is continuous, Tf0 -

lim Tfn = lim/+1 =/0 ,
and thus f0 is the desired fixed function.

n-eo n-> oo

As an illustration on the real numbers let us prove that if a > 0, there is

an x0 > 0 such that x02 = a, by Newton's method. First, we describe the
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map T. Let p > 0, the linear approximation to x2 a at p is p2 a

+ 2p(x p). Thus, the zero of this linear polynomial is

Tp =^- + p
2p -IH

Clearly, ifThas a fixed point x0 ,
we must have x02 = a. Thus, we must show

that Tis a contraction on some closed interval:

|Tx-Tv|=;
1 a a

y +
X V

1

~2

a
,

x-y + (y
xy

-X)

-\ x-y\ 1-^XV

Since a, x,y axe all positive, 1 (a/xy) < 1, so we need only ensure that

1 (a/xy) > 1, for Tto be a contraction with c = \. Let/ = {x: x2 >a/2}.
Then for x, y e I, xy > a/2, so a/xy < 2, which is the desired inequality.

Thus, by the fixed point theorem there is an x0 with x02 > a/2 such that

x02 = a.

We shall now give a somewhat more subtle application of the fixed point
theorem. Sometimes a relation between two real variables determines one

as a function of the other. For example, the relation x + v = 0 determines

j as a function of x: y
= x; x2 + y2 = 1 gives y = (1 x2)1/2 near the

value (0, 1), and near (1, 0) we should write x = (1 y2)1/2 as a function

of y. The relations

= 1 sin(x(log y)) = 0

are somewhat less transparent, nevertheless we can ask whether or not they
do determine y as a function of x.

Suppose now, in general we have an equation (see Figure 2.18)

F(x, y) = 0 (2.47)

defined in the plane. We ask : does there exist a function g of x such that

(2.47) amounts to saying y
= g(x) ? More precisely, is there a function g

such that

F(x, y) = 0 if and only if y
= #(x)

It is not hard to find a necessary condition. For there to be such a function
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y is a function of jc y is not a function of j:

Figure 2.18

it must be the case that each line x = constant intersects the set F(x, y) = 0

in only one point (see Figure 2.19). Thus the function F(x, y), as a function

of y on lines x = constant must take the value 0 only once. The root of

F(x, y) = 0 is then the value g(x). Now we recall from one-variable theory
that a function H(y) will take all values once if H'(y) j= 0. Thus the reason

able condition to impose on F is that it has a continuous partial derivative

with respect to y, and dF/dy = 0. This condition turns out to be enough.

More precisely, suppose that F is defined and has continuous partial
derivatives in the neighborhood of the origin in R2, and dF/dy(0, 0) ^ 0.

Figure 2.19
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We seek a function g defined in a neighborhood of x = 0 such that #(0) = 0

and F(x, g(x)) = 0. If we fix x = x0 near 0, then we seek a root of

F(x0 , y) = 0. This brings us right back to Newton's method. Define T

as a function ofy as Newton did: T(y) is the zero of the linear approximation
of F(x0 , y) at y ; that is,

dF

F(xo,y) + (xo,y)(Ty-y) = 0

dy

or

Ty = y-
dF

Jy
(x0 , y) F(x0 , y) (2.48)

Just as in Newton's case the solution of F(x0 , y) = 0 is the fixed point of T.

Thus, we need only verify that T is a contraction in some interval of values of

y for x0 near x so that it will have a fixed point ; and we define g(x0) to be

that fixed point. This application of the fixed point theorem really works, as

we now shall prove.

Theorem 2.16. Suppose that F has continuous partial derivatives in a

neighborhood of(0, 0), and that F(0, 0) = 0, dF/dy(0, 0) # 0. Then there is a

function g definedfor x in some interval ( 6, e) such that

F(x, y) = 0 ifand only if y
= g(x)

Proof. Instead of (2.48) we consider something slightly simpler. For x near 0,

define

Tx(y)=y-
d2L-
Ty

(0,0) F(x,y) (2.49)

Wewant to find the fixed point, if it exists, of (2.49). Thus we seek suitable intervals,

e < x < e, 17 < y < 77 in which Tx is a contraction

T,(yi)
-

Tx(y2) =yi-y2- \8F .

(0,0) [F(x,yi)-F(x,y2)] (2.50)

By the mean value theorem there is a t, between y1 and y2 such that

dF

F(x, y,)
-

F(x, y2) = (x, 0(yt -

y2)
dy
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Equation (2.50) becomes, upon substitution,

Tx(yi) - Tx(y2) = (yi - y2)\l - 3-f (0, 0)"1 8-f (x, 0
I dy dy

(2.51)

Now the term in brackets is continuous in (x, <!;) and has the value 0 at

(0, 0). Thus we may choose e so that that term is less than \ if -e < x < e,

s<yi<e, e < y2 < e and is between yy and y2 . With this choice

of e, (2.51) gives

\Tx(yi)-Tx(y2)\<i\yi-y2\

so Tx is indeed a contraction. Define g(x) as the fixed point of Tx . Then, if

F(x, y) = 0, then by (2.49) Tx(y) = y, so we must have y
= g(x). On the

other hand, if y = g(x), then Tx(y) = y, so again by (2.49) we must have

F(x, y) = 0. The theorem is proved.
To say that the function g exists is already good enough, but much more is

true: g is a continuously differentiable function. We will leave the verifica

tion of this fact to the interested reader (see Problem 58). In Section 7.2

we shall reconsider this theorem (known as the implicit function theorem)

in many more variables. The beauty of the fixed point theorem is that the

general context does not at all complicate the ideas, nor the verifications.

EXERCISES

31. Find, by Newton's method, a sequence of numbers converging to

the square root of a, for any a > 0. Now, do the cube root.

32. Find a sequence converging to a root of these polynomials :

(a) x3 + x2 + x+l (c) xb-2x2-3x + 2

(b) x2-x+l (d) x5 -x- I

33. (a) Let F(x, y)=x sin(xy). For what values of (x, y) such that

F(x, y) = 0 is it true that nearby the equation F(x, v) = 0 defines v as a

function of x?

(b) Same problem for

(i) F(x,y)=xy2 + 2xy+\, (ii) F(x, y) = x" -

y,

(iii) F(x, y) = x2 + v2-

34. Let F(x, y) be differentiable in a domain D, and (x0 ,y0)e D such

that F(xo,yo)=0. Suppose g is differentiable and has the property

<7(*0) = vo , F(x, g(xj) = 0. Show that

8F\dx(x0,y0)
9{-Xo)-

8F/dy(x0,yo)
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35. Find g' where g is defined implicitly by

(a) xsin(xy)=0 (c) exy = l

(b) cos(x+v)=y (d) e"=y

PROBLEMS

57. Prove the fixed point theorem in R":

Theorem IfS is a subset of R" and T is defined on S and is a contraction

on S, then there is a unique y0 e S such that T(y0) = y<> .

58. Let F have continuous partial derivatives near (x0 , y0) and suppose

F(x0 , y0) = 0, dF/8y(x0 , jo) = 0. Let g be the function described in

Theorem 2.15 (F(x, y(x))=0 and g(x0)=y0). We can prove that g is

differentiable as follows.

(a) First of all, by the mean value theorem, for any (x, y), there is a

(f , 7j) on the line between (x0 , y0) and (x, y) such that

8F 8F
>

F(x, y)
-

F(x0 , y0) = (I t/)(x ~Xo) + (, -q)(y
- y0)

Why is the mean value theorem applicable?

(b) Now, if we substitute y=g(x), y0 =g(x0), we have

8F dF
0 = (|, rj)(x -Xo) +

Yy
(f V)(9(x)

- 0(Xo))

Thus

g(x)
- g(x0) - dF/8x(lj, ri)

x Xo 8F/8y(, tj)

Conclude that g is differentiable and

8F/8x(xo,g(x0))
g'(x0) =

8F/8y(Xo,g(xo))

2.12 Summary

A sequence zx z,... of complex numbers is a function from the

positive integers to C. The sequence {z} converges to z if, for every e > 0

there is an N such that \z z\ < e for n > N.

A convergent sequence is bounded, but not conversely. A monotonic

bounded sequence of real numbers is convergent. Cauchy criterion: a
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sequence {z} converges if, for every e > 0, there is an N such that \z -

zm \ < e

for both n,m>N.

The series formed of a sequence {zn} is the sequence of sums (?=i zj-
If the sequence of sums converges, we say that the series converges and denote

the limit by "= i z . If 2 z- converges, then z -> 0, but not conversely.
If {ck} is a sequence of nonnegative numbers, c*. converges if and only
if the sequence =1 ck is bounded. A series z converges absolutely if

XlzJ < oo. Absolutely convergent series may be summed in any convenient

way.

Tests for Convergence

comparison test. Suppose |z| < \wB\ for all but finitely many n. Then

(0 if E |w| converges, z is absolutely convergent, (ii) if 2 |z| diverges,
so does 2 |h>|.

root test. If |c|1/n < r for some r < 1 and all but finitely many n, 2 c
is absolutely convergent.

ratio test. If \cn+1/cn\ < r for some r < 1 and all but finitely many n,

2 c is absolutely convergent.

The sequence {yk} of vectors in R" is said to converge to v if, for every
e > 0, there is an N such that || yk

-

v || < s for k > N. A sequence of vectors

converges if and only if it does so in each coordinate.

A set S is closed if and only if yk e S, lim yk
= v implies v e S also. Every

sequence contained in a closed and bounded set has a convergent subsequence.
An .Revalued function defined in R" is said to be continuous at v0 iff is

defined in a neighborhood of v0 and yk -> v0 implies f(yk) </(v0). A func

tion is continuous on a set S if it is continuous at every point of S. If S is a

closed and bounded set, and / is a continuous real-valued function defined

on S, then/is bounded and attains its maximum and minimum.

Sections 2.6 and 2.7 are mainly about integration. We shall not recollect

the definitions here; only the major results.

fundamental theorem of calculus. Suppose / is continuous on the

interval [a, b}. Then the integral

F(x) = ff

exists for all x e [_a, b~\. Fis differentiable on (a, b) and F' =/.



220 2. Notions of Calculus

fubini's theorem. Let /be an integrable function defined on a rectangle
R = Jj x x I in R". J/can be computed by iteration:

\j
=([ \l /(*'. *") dx" ^"-1 ' dx1

Let /be a real-valued function defined in a neighborhood of x0 in R". If

v is a vector in R", the directional derivative df(x0 , v) of/atx0 in the direction

v is defined by

lim/(X + ty) ~ /(Xo)

f->0 '

(if it exists). The partial derivative of/with respect to x' at x0 is

,(x0) = df(x0,Ei)

If these partial derivatives are all defined and continuous near x0 ,
then

df(x0 , y) is linear in v. We can write

If the partial derivatives df/dx' all exist in an open set we may be able to

compute the derivatives d(df/dx')/dxJ. These are the second-order partial
derivatives. If all first and second derivatives off exist and are continuous

in an open set N, then

d2f d2f

dx' dx1 dx1 dx'

throughout N.

Suppose that / has continuous partial derivatives in the domain I x D,

where I is an interval of reals, and D is a domain in Rn. Let

F(x) = f f(x, y) dy

Then F is differentiable and

d,.., f W

dx
00 = J g^0y)dy
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Suppose /is a real-valued function defined on R. We say that/(x) con

verges to L as x -> oo written lim/(x) = L if |/(x) -

L| can be made arbi-
x->ao

trarily small by taking x sufficiently large. If now /is a continuous function

on R such that

lim f/
x- oo ^0

exists, we say that /is integrable on R. If lim J* |/| exists, /is absolutely
X~*QO

integrable. Integral test: If/ is a positive, decreasing continuous function

defined on R, then jf /exists if and only if "= i/(n) < oo.

Let X be a closed and bounded set in R". We denote by C(X) the collection

of all complex-valued continuous functions on X. C(X) is a vector space.

If/is in C(X), the /en#fn of/is

H/ll =max{|/(x)|:xX}

For/ # in C(X) the distance between/and gis \\f- g\\. If {/} is a sequence

in C(Z), and ||/ -/|| ->0 as n-> oo for some /e C(Z), we say that {/}

converges uniformly to / Cauchy criterion. Suppose {/} is a sequence

in C(X) satisfying the following condition: for each > 0, there is an N such

that ||/ -/J| < 6 whenever n,m>N. Then there is an/e C(X) such that

/->/ uniformly.

integration. If X is an interval in R, and/, -^/uniformly in C(X) then

also J*/ -" J/ uniformly.
The exponential function, denoted exp(cx), or ecx for any complex number

c is the solution of the differential equation y' = cy, y(0) = 1. It has these

properties :

(cx)n

= o n!

c(x+y) _ ecxecy

ecx is never zero.

fixed point theorem. Let S be a closed set offunctions in C(X) and T a

mapping of S onto S which is a contraction; that is, there is c < 1 such that

II T(f) - T(g) || < c ||/
-

g II for all figeS

Then there is a unique continuous function f0 such
that T(f0) =f0
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implicit function theorem. Suppose that F has continuous partial
derivatives in a neighborhood of (0, 0), and that F(0, 0) = 0, dF/dy(0, 0) # 0.

Then there is a function g defined for x in some interval ( e, e) such that

F(x, y) = 0 if and only if y
= g(x)

FURTHER READING

M. Spivak, Calculus, Benjamin, New York, 1967. This is an eloquent
text in the one-variable calculus. It is an excellent reference for a full

treatment of the material in this chapter.
T. A. Bak and J. Lichtenberg, Mathematics for Scientists, Benjamin,

New York, 1966. This is a review of the theory of calculus from the point
of view of the physical scientist. It includes a chapter on numerical analysis.
C. W. Burrill and J. R. Knudsen, Real Variables, Holt, Rinehart and

Winston, New York, 1969. An advanced text, going thoroughly through
the material of this chapter and beyond to the theory ofLebesque integration.

MISCELLANEOUS PROBLEMS

59. Let {x} and {yn} be sequences. Then {x + yn} is also a sequence.

So also is {rx} for any real number r; thus the collection S of all real

sequences is a vector space. Show that it is not finite dimensional.

60. Show that the collection B of bounded sequences is a linear subspace
of the vector space S of all sequences (Problem 59).

61 . Show that the collection C of convergent sequences is a linear sub-

space of B. Also C0 ,
the collection of all sequences converging to zero is a

linear subspace of B. These spaces are all infinite dimensional.

62. Define the function
"

lim
"

on convergent sequences in the obvious

way : lim : C -* R : lim{x} = lim x . Show that lim is a linear function.

63. What is the dimension of the space of linear functional on C which

annihilate C0?

64. Let xi =4, x2
= i(4 + ), and once x2 ,

. . .
, x are defined, let

x+i
= i(xn + 3/x). Prove that {x} converges. Assuming that, find the

limit.

65. (a) Show that for every integer k,

lim n"/(n + 1)' = 1

limnV(n+l)t+1=0

lim nk+i/(n + 1)" does not exist

(b) Let k be an integer, and 1 > h > 0. Show that lim n"h" = 0.

(c) Show that lim n/h" does not exist.
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66. Let xi = 1, and in general

_,
1+x,

x+i 3
3 + x

Find lim x .

67. Suppose lim z = z.

(a) Let y = J(z_, + z). Then lim ,y
= z.

(b) Let A: be a positive integer. Now let {y} be defined by

1

y-
=

~k~+\
^Zn + Zn+1 "' ^ z"+)

Then limy=z also.

(c) This time take

1

y
=

-

(zi + + z)

Once again lim> = z.

68. Suppose that / is continuous at c, and lim c = c. Then

lim/(c) =/(c).
69. Let {c} be a sequence of complex numbers, and suppose (|c|)"" = R.

Show that R'1 is the radius of convergence of 2 cz".

70. Let {.$}, {?} be two sequences of positive numbers such that lim s tn
'

exists and is nonzero. Then 2 s converges if and only if 2 t converges.
71. Let {c} be a sequence of positive numbers. Suppose that for every

sequence of positive numbers {/?} such that 2 Pi < we have also

2 C"P < - Prove that {c} is bounded.

72. Verify Schwarz's inequality:

iiaAiV^iw2- !>i2
1=1 / n=l n=l

(Hint: It is true by virtue of the same fact for finite sums, which was dis

cussed in Problem 74 of Chapter 1 .)

73. Prove that if 2 kl2 < , then 2 (Un)\a\ < co. Is the reverse

implication true?

74. Let S be a subset of Rn. Show that (S) = {yeR": <v, s>=0

for all s 6 S} is a closed set.

75. Suppose that / is a continuous positive real-valued function defined

on a set S in R". Show that log /is also continuous.

76. Suppose that /is a continuous real-valued function defined on all of

R". Let x0 , Xi e R" and c e R be such that /(x0) < c </(x,). Show that

there is an x2 e R" such that f(x2) = c.
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11. Show that if /is a continuous function on the interval / taking only

rational values, then /must be constant.

78. A set S in R" is called connected if every continuous real-valued func

tion has the intermediate value property. Show that this is equivalent to the

following definition:

A set S is not connected if there is a continuous real-valued function /

defined on S which takes precisely two values.

79. Verify the following assertions :

(a) A ball in R" is connected.

(b) The set of integers is not connected.

(c) The sphere {xe R3: ||x || = 1} is connected.

(d) The union of two balls in R" is connected if and only if they

intersect.

(e) An open set is not connected if and only if it can be written as the

disjoint union of two nonempty open subsets.

(f ) A closed set is not connected if and only if it can be written as the

disjoint union of two nonempty closed sets.

80. Let / be a continuous function on the closed and bounded set X.

Then/is uniformly continuous; that is, given e > 0, there is a S > 0 such that

for all x, y e A'such that |x y\ < S we have |/(x) f(y)\ < e. Supposing

not, we can derive a contradiction as follows. There is an e0 such that

for every 8,
"

|x y | < S implies \f(x) f(y)\ < e0
"

is not true. Taking
S = 1/n, there are x,yn with |x y\ <l/but \f(xn)f(y)\ >e0. Since

X is closed and bounded, these sequences have convergent subsequences:

{x\}, {y/}. Show that lim x' = lim/ but |/(lim x') /(lim y')| > e0 ,
a

contradiction.

81. Let L be a linear functional on R" and choose v0 such that ||w0|| = 1

and

L(v0)=max{L(v): N| = l}

Show that for every v e R", L(v) = L(v0) <y, v0~>.

82. Let / be an integrable function on the rectangle [a, b]. Let R, be

rectangle [a, b + <(b a)], for 0 <, t <, 1. Verify that / is integrable on

each rectangle R, ,
and define F(t) = JRt /. Show that / is continuous. Is

/differentiable?
83. Let Q = {pjq : p, q integers with 0 <,p <l q). Q is a subset of the unit

interval [0,1] which is not measurable. For surely Jxo = 0, and if

Ri u_-
kj R => Q, then also Ri u u R => [0, 1], so J 2 Xi ^ !> and

thusj Xq = 1-

84. Let / be an integrable nonnegative function defined on the domain

B c R2 and consider D = {(x, y,z)eR3; 0 <. z <>f(x, y) ; (x, y)eB}.

Verify that Vol(Z>) = j /.
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85. Suppose that / is a continuous decreasing real-valued function of a

real variable and lim f(x) = 0. Then f<f f(x) sin x dx converges (compare
X-.CO

this with Leibniz's theorem for series).
86. Suppose that /is a real-valued function defined on R". We say that

/(x)^ + oo as Hxll-* oo

if, for every M there is a if such that f(x) >M whenever ||x || > K. Show

that if/is a real-valued continuous function on R" such that/(x) -> + oo as

|jx|| -s- oo, then /attains a minimum at some point.
87. Define

/(x)->0 as ||x||-*oo

in a way suggested by the definition in the above problem. Show that if a

continuous function on R" has this property, then it attains both a maximum

and a minimum on R".

88. Suppose / is a real-valued function which has continuous partial

derivatives in the ball {x e R": ||x|| < 1}. Show that the function

<7(x)=f f(tx)dt

has the same properties, and find Vg.

89. Let /2 be the space of sequences {c} of real numbers such that

2ici2<
n = l

Because of the result in Problem 72 (Schwarz's inequality), if {c} and {dn}

are in I2, then

<{*}, ,}> = 2 c*d
n = l

converges. Show that I2 is a Euclidean vector spacewith that inner product.

90. The space of continuous functions on
the unit interval can be made

into a Euclidean vector space in this way:

</<?>=[ f(t)g(t)dt

Corresponding to this inner product is a notion of length which we denote

by || 1 12 so as to distinguish it from the modulus || || introduced in the
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text. Show that this length is deficient in these respects :

(a) We can have ||/||2-*0 without having ||/||-^0.

(b) We can have a sequence {/,} of continuous functions which is a

Cauchy sequence in the sense of the length || ||2 ,
but which does not

converge to a continuous function. On the other hand, show that

(c) if ||/. ||. ^0, then ||/||2 -*0 also.

91. Suppose L: C[0, l]-*j? is a linear function. Show that L is con

tinuous if and only if there is an M > 0 such that

\L(f)\^M\\fU

92. Show that there is a unique differentiable function f0 such that

f'o(x) = (/o(x))2 for all x and /o(0) = i

Do it by applying the fixed point theorem to the function T defined below

ontheset{/<=C[i ]: ||/||<f}:

x

Tf(x)=\ f2(t)dt+i

93. We can talk of open and closed sets, and convergence in the space M
"

of (n x n) matrices, merely by considering them as vectors in R"2. Doing so

verify these statements :

(a) The set G of invertible (n x n) matrices is open.

(b) The set of triangular matrices is closed.

(c) The function A->A2 is continuous.

(d) lfp is any polynomial in one variable the function

T->p(T)

is continuous.

(e) lim (x/n!) 2=o (l/n!)TB exists for all TeL(R", Rm).
fl-00

94. Suppose g is a continuous real-valued function on the interval

[a, a]. Show that the implication

f g(t)f(t)dt = 0
J
-0

for all fe F implies g = 0 holds whenever F is any one of these classes :

(a) F=C([-a,a]).

(b)F=Ci([-a,a]).

(c) F is the collection of all polynomials.

(d) Fis the collection {xi'-Ia subinterval of [a, a]}.

(e) Fis the collection of all continuously differentiable functions such

that/(-a)=/(a) = 0.
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